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Abstract

In the framework of the extended irreversible thermodynamics a
non conventional description for nanocrystals with defects of dislo-
cation is given, introducing a second order dislocation tensor à la
Maruszewski, its gradient and its flux as internal variables in the ther-
modynamic state vector. Liu’s theorem is used to analyze the entropy
inequality and to derive the laws of state, the affinities, the entropy flux
and the residual inequality. To close the system of equations illustrat-
ing the behaviour of the media under consideration, the constitutive
equations and the rate equations for the dislocation field, its flux and
the heat flux, presenting a relaxation time and describing disturbances
propagating with finite velocity, are derived, in a first approximation.
The behaviour of dislocation defects in nanostructures is one of the
challenges in the so called ”defects engineering”, because they have
a direct influence on mechanical and transport properties. The ob-
tained results have applications in nanotechnology and several fields of
applied sciences.

1 Introduction

The models for nanocrystals with defects of dislocation may have relevance
in many fundamentals sectors of nanotechnology. Understanding the influ-
ence of dislocations on mechanical and transport properties in miniaturized
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systems is an interesting topic in ”dislocation engineering”. Here, in the
framework of the extended irreversible thermodynamics (see [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10]), nanocrystals with dislocation lines are described,
using an internal variable, the dislocation core tensor, its gradient and its
flux. Dislocation channels modify the thermal conductivity. In [11] and [12]
non-equilibrium temperatures and heat transport equation in nanocrystals
with defects of dislocation were studied using the results obtained in this
paper. From experimental and theoretical studies it was found that the
dislocation density ρd, described by the trace of the dislocation core tensor,
has only a minor effect on the thermal conductivity for defects densities
smaller than a characteristic value dependent on the material and tempe-
rature but for higher values, there is a decrease of thermal conductivity.
This is due to phonon-defect scattering, which is negligible as compared
to phonon-phonon scattering for small defects densities ρd but leads to a
reduction in the thermal conductivity or high values of ρd, and this situ-
ation influences the nanodevice performances. Nanostructures can present
metallurgical defects (for example inclusions, cavities, microfissures, dislo-
cations), that sometimes can self propagate because of changed conditions
and surrounding conditions that are favorable. A relatively high tempera-
ture gradient could produce, for instance, a migration of defects inside the
system. In [13], [14], [15], [16], [17], [18], [19], [20], [21], [22] [23], [24], [25],
[26], porous, piezoelectric, elastic, semiconductor and superlattice stuctures
with dislocation defects were also studied using the same internal variable
(the dislocation core tensor), its gradient and its flux. The results, obtained
in this paper, may have applications in describing the thermal behavior in
nanosystems, where the phenomena are fast and the rate of variation of the
properties of the system is faster than the time scale characterizing the re-
laxation of fluxes towards their respective local-equilibrium value. In these
nanosystems, situations of high-frequency thermal waves occur. In this case,
the thermal perturbation is so fast that its frequency becomes of the order
of the reciprocal of the internal relaxation time, given, for instance, by the
collision time of heat carriers. Furthermore, the volume element size d of
these systems along some direction is so small that it becomes comparable
to (or smaller than) the mean-free path l of the heat carriers (d ≤ l). Then,
in extended thermodynamics it is essential to incorporates the fluxes among
the state variables. In Section 2, in the framework of extended irreversible
thermodynamics with internal variables, a model is developed for elastic
nanosystems with dislocations, where the internal structure is described by
a dislocation core tensor à la Maruszewski (see [27]), its gradient and its
flux. In [24], [25] a new definition of dislocation tensor was used, introduced
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in analogy with the anisotropic tensor describing the anisotropy of quantized
vortices in turbulent superfluid helium II [28], [29] and [30]. In Section 3 the
entropy inequality is analized, using Liu’s theorem [31] and several results
are obtained: the laws of state, the affinities, the flux-like properties of the
physical processes inside the medium, the residual inequality, the entropy
flux and the form of the free energy. These results are taken into considera-
tion in [11] and [12], where, however, the flux of dislocations was negligible
in the thermodynamic state vector and non-equilibrium temperatures and
the heat transport for nanosystems with dislocations were studied. Instead,
in this paper we take also into account that the dislocations can self propa-
gate because of changed conditions, and this propagation may influence the
heat proagation. In Section 4, by the help of Smith’s theorem [32], that
uses isotropic polynomial representations of proper functions obeying the
principle of objectivity, the constitutive theory and the rate equations for
the dislocation core tensor, the heat and dislocation fluxes are obtained, in
a first approximation. According the extended thermodynamics a gener-
alized Maxwell-Cattaneo-Vernotte and transport equations for the internal
variable and the dislocation flux describing physical disturbances with fi-
nite velocity are derived, from which it is seen the influence of dislocation
field on the processes occurring inside the media under consideration. The
derived results have technological applications in very miniaturized systems
(nanotechnology), in high-frequency processes and in the production of new
materials having complex microstructures and special thermal properties.

2 A model for nanocrystals with dislocations

In this section in the framework of extended irreversible thermodynamics
with internal variables, we present a model for nanocrystals with disloca-
tions. The dislocation lines form a network of infinitesimally capillary chan-
nels, that disturb the periodicity of the crystal lattice, influence physical
phenomena and interact with physical fields occurring inside the nanocrys-
tals. The interatomic distances are not conserved in the direct neighborhood
of a dislocation line. The diameter of the core is comparable with the lattice
parameter and depends on the kind of dislocation [33], [34]. In this paper,
among the various descriptions of media defective by dislocations we use that
one based on using a dislocation core tensor aij , introduced by Maruszewski
[27], coming from the use of volume and area averaging procedures. An
elementary sphere volume Ω is considered, Ω = Ωs + Ωch, with Ωs the solid
space and Ωch the space with the dislocation channels. Furthermore, the
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Figure 1: The averaging scheme [12]

central sphere section is indicated by Γ and is given by Γ = Γs + Γch, with
Γs and Γch the solid area and the channel area of Γ. The orientation of Γ
in Ω is given by the normal vector µ. All the microscopic quantities are
described with respect to a system of coordinates ξi (i = 1, 2, 3). while the
macroscopic quantities are described with respect to a system of coordinates
xi (i = 1, 2, 3). In Fig.1 we see the averaging scheme regarding an elemen-

tary volume with dislocation lines. The coefficient fv = Ωch

Ω is assumed
constant inside the medium. Then, let η(ξ) be any scalar, spatial vector or
any order tensor, describing at microscopic level the flux of some physical
field, flowing through the channel space Ωch, with respect to the ξ coordi-
nates. We assume that such quantity is zero in the solid space Ωs and on
the Γs. In such a medium Maruszewski [27] defines the so called dislocation
tensor, responsible for the anisotropic structure of the dislocations lines, in
the following way:

η̄i(x) = rij(x)
∗
ηj (x). (1)

Eq. (1) gives a linear mapping between the bulk-volume average quan-

tity η̄(x) and the channel area average
∗
η (x) of the same quantity passing

through the dislocation area Γch of central sphere section, respectively, given
by

η̄(x) =
1

Ω

∫
Ω̃
η(ξ)dΩ̃, ξ ∈ Ωch,

∗
η(x) =

1

Γch

∫
Γ̃
η(ξ)dΓ̃, ξ ∈ Γch, (2)

where η(x) describes the flux of the physical field under consideration at
macroscopic level. In [27] Maruszewski introduces a new tensor aij , that
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refers rij to the central sphere section Γ and is defined in the following way

aij(x) = Γ−1rij(x). (3)

aij is called dislocation core tensor and has unit m−2.

2.1 Main equations

The aim of this paper is to derive the laws of state and a complete set
of relations contributing to modeling a crystal defective by a network of
dislocations. The mechanical properties of the considered system are de-
scribed by the total stress tensor σij (in general non symmetric) related to
the whole body and the small-strain tensor εij describing the deformation
of the nanocrystal, εij = 1

2(ui,j + uj,i), (where ui are the components of the
displacement vector field) so that the gradient of the velocity field vi of the
body is given by

vi,j = wij +
dεij
dt

, (4)

where
dεij
dt

=
1

2
(vi,j + vj,i), wij =

1

2
(vi,j − vj,i) (5)

are the symmetric and the antisymmetric part of vi,j , respectively. Since
during the deformation the network of dislocations evolves in time, we as-
sume that the dislocation field is described by the tensor aij (not necessarily
symmetric), its gradient and its flux Vijk. Finally, the thermal field is gov-
erned by the temperature, its gradient and the heat flux qi. Thus, the
thermodynamic vector space is chosen as follows

C = {εij , T, aij , qi,Vijk, T,i, aij,k}, (6)

where we have taken into consideration the gradients T,i and aij,k. The
choice of the independent variables shows that the relaxation properties of
the thermal field and the dislocation field are taken into account in agree-
ment with the general philosophy of the extended thermodynamics, however
we ignore the relaxation properties and viscous effects of the mechanical
field. All the processes occurring in the considered body are governed by
two groups of laws. The first group concerns the classical balance equations:
the continuity equation

ρ̇+ ρvi,i = 0, (7)

where ρ denotes the mass density, vi is the velocity of the body point and a
superimposed dot denotes the material derivative;
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the momentum balance

ρv̇i − σji,j − fi = 0, (8)

where fi denotes a body force;
the moment of momentum balance

εijkσjk + ci = 0, (9)

where ci is a couple per unit volume;
the internal energy balance

ρė− σjivi,j + qi,i − ρh = 0, (10)

where e is the internal energy density and h is a heat source.

The second group of laws concerns the evolution equations of dislocation
field, its flux and the heat flux. These rate equations are constructed obeying
the objectivity and frame-indifference principles (see [35], [36] and [37]).
They are chosen having the form

∗
aij +Vijk,k −Aij(C) = 0, (11)

∗
qi −Qi(C) = 0, (12)

∗
V ijk −Vijk(C) = 0, (13)

where Aij is the source-like term for the dislocations, Qi is the heat source
and Vijk is the source term for the dislocation flux. Aij , Qi, Vijk are
constitutive functions of the independent variables of the set C (see Eq.
(6)). In Eqs. (12)-(13) the fluxes of the heat flux and the dislocation flux
are not taken into consideration, because we have to obtain a balanced
system of equations, where the number of equations is equal to the number
of variables. In (11)-(13) the superimposed asterisk indicates the Zaremba-
Jaumann derivative defined for a vector, a second rank tensor and a general
rank tensor ν as follows

∗
νi= ν̇i − wikνk,

∗
νij= ν̇ij − wikνkj − wjkνik,

∗
νk...m= ν̇k...m − wkqνq...m − ...− wmqνk...q. (14)

In the following we use for wij (see (4) and (5)) the expression wij = vi,j−∂εij
∂t

for problems of approximation.
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3 Analysis of the entropy inequality

To be sure that the physical processes occurring in the body under con-
sideration are real, all considered processes should be admissible from the
thermodynamical point of view and thus they should not contradict the
second law. Thus, all the admissible solutions of the proposed evolution
equations have to satisfy the following entropy inequality

ρṠ + φi,i −
ρr

T
≥ 0, (15)

where S is the entropy per unit mass and φi is the entropy flux associ-
ated with the fields of the set C, given by (6). Thus, the following set of
constitutive functions, dependent variables, has to be derived

W = {σij ,Πa
ij , ci, e, Aij , Qi, Vijk, S, φi}, with W = W̃ (C), (16)

where Πa
ij is the potential related to the dislocation field and both C and

W are evaluated at the same point and time. Among the various methods
to analyze the entropy inequality (15) the most convenient one is based on
Liu’s theorem [31], where all balance and evolution equations are considered
as mathematical constraints for the general validity of the inequality (15).
Then, the system of equations (8), (10), (11), (12), (13) and the entropy
inequality (15) can be presented, respectively, in the form

A∆γxγ +B∆ = 0, (17)

αγxγ + β ≥ 0, (18)

with A∆γ , xγ , B∆, αγ , β defined in a suitable way (see (25)-(28) and the
Appendix).

Thus, analyzing the entropy inequality by Liu’s theorem, we have

αγxγ + β − Λ∆(A∆γxγ + β∆) ≥ 0, ∀ xγ , (19)

(αγ −Aγ∆Λ∆)xγ + (β − Λ∆B∆) ≥ 0, ∀ xγ (20)

and then

αγ −Aγ∆Λ∆ = 0, β − Λ∆B∆ ≥ 0, ∀ xγ , (21)

where the so called Lagrange-Liu multipliers Λ∆, accounting for Eqs. (8),
(10), (11), (12) and (13) are defined by

Λ∆ =
{

Λvi ,Λ
e,Λaij ,Λ

q
i ,Λ

V
ijk,
}
. (22)
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The mass conservation law is not taken into consideration, because the den-
sity of considered defective crystals is supposed constant. Therefore, if the
left-hand side of the laws (8), (10), (11), (12) and (13) are denoted, respec-
tively, by Fvi , Fe, Faij , F

q
i and FVijk, the first requirement of Liu’s theorem,

gives (19) written in the form

ρ
∂S

∂t
+ ρvkS,k + φk,k − (ΛviFvi + ΛeFe + ΛaijFaij

+ΛqiF
q
i + ΛVijkFVijk ≥ 0. (23)

i.e.

ρ
∂S

∂t
+ ρvkS,k + (φk),k − Λvi

(
ρ
∂vi
∂t

+ ρvjvi,j − σji,j
)

− Λe
(
ρ
∂e

∂t
+ ρvke,k − σjivi,j + qi,i

)
− Λaij

(
∂aij
∂t

+ vkaij,k +
∂εik
∂t

akj − vi,kakj +
∂εjk
∂t

aik − vj,kaik + Vijk,k −Aij
)

− Λqi

(
∂qi
∂t

+ vjqi,j +
∂εij
∂t

qj − vi,jqj −Qi
)

− Λνijk

(
∂Vijk
∂t

+ vrVijk,r +
∂εir
∂t
Vrjk − vi,rVrjk+

∂εjr
∂t
Virk − vj,rVirk +

∂εkr
∂t
Vijr − vk,rVijr − Vijk

)
≥ 0,

(24)

where the mass force and the heat source have been neglected. The entropy
inequality is an objective law, then in (23) Λe is an objective scalar function,
Λvi ,Λ

q
i are objective polar vectorial functions, Λaij is an objective tensorial

function of second order and ΛVijk is an objective tensorial function of third
order. Taking into account that the entropy function S, the stress tensor
σij , the entropy flux φi, the internal energy e are constitutive functions of
the independent variables εij , T, aij , qi, Vijk, T,i, aij,k, from (19) and (24) we
obtain the following quantities

αγ =

{
0; ρ

∂S

∂εij
; ρ
∂S

∂T
; ρ

∂S

∂aij
; ρ
∂S

∂qi
; ρ

∂S

∂Vijp
; ρ
∂S

∂T,i
;

ρ
∂S

∂aij,p
; 0; ρvk

∂S

∂εij
+
∂φk
∂εij

; ρvk
∂S

∂qi
+
∂φk
∂qi

; ρvk
∂S

∂Vijp
δkl +

∂φk
∂Vijp

δkl;
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ρvk
∂S

∂T,i
+
∂φk
∂T,i

; ρvk
∂S

∂aij,p
δlk +

∂φk
∂aij,p

δlk

}
, (25)

{xγ} =

{
∂vi
∂t

;
∂εij
∂t

;
∂T

∂t
;
∂aij
∂t

;
∂qi
∂t

;
∂Vijp
∂t

;
∂T,i
∂t

;

∂aij,p
∂t

; vi,k; εij,k; qi,k;Vijp,l;T,ik; aij,pl
}
, (26)

β =

{
(ρvk

∂S

∂T
+
∂φk
∂T

)T,k + (ρvk
∂S

∂aij
+
∂φk
∂aij

)aij,k

}
, (27)

B4 = {−∂σkr
∂T

T,k−
∂σkr
∂aij

aij,k; ρvk
∂e

∂T
T,k+ρvk

∂e

∂aij
aij,k;−Aij+vkaij,k;−Qi;−Vijk}

(28)

and a matrix {A∆γ} = {Am|n}, whose the elements are collected in Ap-
pendix A. Furthermore, we have

αγ = αγ(yλ), β = β(yλ), B∆ = B∆(yλ), xγ = xγ(yλ), A∆γ = A∆γ(yλ),

with

{yλ} = {vi, εij , T, aij , qi,Vijk, T,i, aij,k}. (29)

Thus, after some calculations, from (21) the following results are deduced

Λvrρδir = 0,

from which we have

Λvr = 0,
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and also

ρ
∂S

∂εij
− Λeρ

∂e

∂εij
= −σjiΛe,

ρ
∂S

∂T
− Λeρ

∂e

∂T
= 0,

ρ
∂S

∂aij
− Λeρ

∂e

∂aij
= ρΛaij ,

ρ
∂S

∂qi
− Λeρ

∂e

∂qi
= Λqi ,

ρ
∂S

∂Vijk
− Λeρ

∂e

∂Vijk
= ΛVijk,

ρ
∂S

∂T,i
− Λeρ

∂e

∂T,i
= 0,

ρ
∂S

∂aij,k
− Λeρ

∂e

∂aij,k
= 0,

ρvk
∂S

∂εij
+
∂φk
∂εij

− Λeρvk
∂e

∂εij
= 0,

ρvk
∂S

∂T,i
+
∂φk
∂T,i

− Λeρvk
∂e

∂T,i
= 0,

ρvk
∂S

∂Vijp
+

∂φk
∂Vijp

− Λeρvk
∂e

∂Vijp
= Λaijδpk + vkΛ

V
ijp,

(30)

ρvk
∂S

∂qi
+
∂φk
∂qi
− Λeρvk

∂e

∂qi
= Λeδik + vkΛ

q
i ,

ρvk
∂S

∂aij,k
+

∂φk
∂aij,k

− Λeρvk
∂e

∂aij,k
= 0.

(31)

The residual inequality has the form[
ρvk

∂S

∂T
+
∂φk
∂T
− Λeρvk

∂e

∂T

]
T,k +

[
ρvk

∂S

∂aij
+
∂φk
∂aij

− Λeρvk
∂e

∂aij

]
aij,k

+ΛaikAik + ΛqiQi + ΛVijkVijk ≥ 0. (32)

Introducing the free energy density F and the flux vector Ki by

F = e− TS, and Ki = ρFvi − Tφi, (33)

substituting these expressions into (30) and (31) we obtain
the multiplier Λe (see 30)2

Λe =
1

T (Θ)
, (34)
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where Θ denotes the empirical temperature,
the remaining multipliers

Λaij = − 1

T
Πa
ij , (35)

Λqi = − 1

T
Πq
i , ΛVijk = − 1

T
ΠVijk, (36)

the laws of state (giving the variables in terms of the partial derivatives of
the free energy respect to own conjugate variables)

σij = ρ
∂F

∂εij
,

S = −∂F
∂T

, Πa
ij =

∂F

∂aij
,

∂F

∂T,i
= 0,

∂F

∂aij,k
= 0 (37)

the affinities (the variables conjugated to the corresponding fluxes)

Πq
i ≡ ρ

∂F

∂qi
, ΠVijk ≡ ρ

∂F

∂Vijk
. (38)

Eq.s (34)-(38) give the physical meaning of Lagrange multipliers. Also, we
obtain the group of relations pertaining to the flux-like properties of the
physical processes occurring in the considered media

∂Kk

∂εij
= 0,

∂Kk

∂qi
= −δik + vkΠ

q
i , (39)

∂Kk

∂Vijp
= Πa

ijδpk + vpΠ
V
ijk,

∂Kk

∂T,i
= 0,

∂Kk

∂aij,p
= 0. (40)

From these results the residual inequality simplifies to

T
∂φk
∂T

T,k + T
∂φk
∂aij

aij,k −Πa
ijAij −Πq

iQi −ΠVijkVijk ≥ 0. (41)

From (39) and (40), taking into account (33), (37) and (38), we obtain

Kk = −qk + Πa
ijVijk + ρvkF. (42)

Hence, the form of the entropy flux is given by

φk =
1

T
(qk −Πa

ijVijk). (43)
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From (43) it is seen that in the entropy flux there are the contributions due to
the heat and dislocation tensor fluxes. Also, from the above considerations
it results that the free energy is given by the following function

F = F (εij , T, aij , qi,Vijk), (44)

and, the stress tensor σij is symmetric, being εij symmetric (see the state
law (37)1), and therefore in the momentum of momentum balance (9) the
couple ci vanishes.

4 Constitutive relations and rate equations

In this section, in order to have a closed system of equations having the same
number of equations and unknown variables (independent and dependent),
by the help of Smith’s theorem [32], that uses isotropic polynomial repre-
sentations of proper functions which must obey the principle of objectivity,
the constitutive theory and the rate equations for the dislocation field, the
heat and dislocation fluxes are derived, in a first approximation. The dis-
tribution of the dislocations forms a network of very thin tubes influencing
mechanical and transport processes within the medium. In general, the ar-
rangement of the dislocation lines is an anisotropic one. However, there exist
situations where it is possible to assume that the quantities responsible for
the dislocation field and its flux can be presented in the form

aij = aδij , Aij = Aδij , Πa
ij = Πaδij ,

Vijk = Vkδij , Vijk = Vkδij , ΠVijk = ΠVk δij . (45)

Taking into account that σij is a symmetric tensor, Πq
i ,Π

V
i , Vi, Qi are ab-

solute vectors and S,Πa, A are scalars, applying Smith’s theorem [32] the
following representations are obtained, in a first approximation, for the con-
stitutive functions σij , S,Π

a

σij = β1
σδij + β2

σεij , (46)

S = β1
sT + β2

sa+ β3
sεkk, (47)

Πa = β1
πT + β2

πa+ β3
πεkk, (48)

where the coefficients βασ (α = 1, 2), βγs , β
γ
π (γ = 1, 2, 3) can be functions of

the following invariants

T, a, εkk, εijεij , (49)
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for the affinities Πq and PiVi

Πq
i = β1

qVi + β2
q qi, ΠVi = β1

VVi + β2
Vqi, (50)

where βδq , β
δ
V(δ = 1, 2) can be depend on the invariants:

ViVi, qiqi,Viqi. (51)

Furthermore, in a first approximation, we can assume that the rate equations
(11)-(13) have the following form, where we have expressed the dislocation
source A, the heat source Qi and the dislocation flux source Vk by the help
of Smith’s theorem

∗
a +Vk,k = γ1

aT + γ2
aa+ γ3

aεkk, (52)

∗
Vk= γ1

Va,k + γ2
VT,k + γ3

VVk + γ4
Vqk, (53)

∗
qk= γ1

qa,k + γ2
qT,k + γ3

qVk + γ4
q qk, (54)

where the coefficients γεa (ε = 1, 2, 3), are functions depending on the in-
variants (49) and γηV , γ

η
q (η = 1, 2, 3, 4) can depend on suitable invariants

built on appropriate variables of the set C (6) (see [32]). In the case where
we can use the material derivative instead of Zaremba-Jaumann derivative,
Eqs. (52) - (54) can also be written in the form

ȧ+ Vk,k = γ1
aT + γ2

aa+ γ3
aεkk, (55)

τV V̇k = −Vk + χ1
Va,k + χ2

VT,k + χ4
Vqk. (56)

τ q q̇k = −qk + χ1
qa,k + χ2

qT,k + χ4
qVk, (57)

where τV and τ q are the relaxation times of the fields V and q, respectively,

the new coefficients χ
(ε)
V and χ

(ε)
q (ε = 1, 2, 4), in (56) and (57), are expressed

in terms of the coefficients present in equations (53) and (54) and the mi-
nus signs come from physical reasons. The rate equation (57) for the heat
flux generalizes Vernotte-Cattaneo relation, where the finite velocity of the
thermal disturbances is taken into consideration (eliminating the paradox
of Fourier heat equation, that leads to thermal propagation with infinite
velocity) [38], [39].
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5 Conclusions

In this paper a model for nanocrystals with defects of dislocation was given in
the framework of extended irreversible thermodynamics with internal vari-
ables. It was assumed that the media under consideration have constant
mass density, the body force and heat source are negligible and the dislo-
cation field (the internal variable), its flux and heat flux are independent
variables in addition to the classical variables εij and T . Also the non local
effects of the temperature field and dislocation field were taken into account,
introducing le variables T,i and aij,k. The entropy inequality was analyzed
by Liu′s theorem, where all balance and evolution equations of the prob-
lem are considered as mathematical constraints for its validity and the state
laws, the affinities, the residual inequality, the entropy flux and other re-
lations were obtained. By the help of Smith’s theorem constitutive theory
and the rate equations for the dissipative fluxes and the dislocation field,
formulated as ansatzes in the form of balance equations describing time-
dependent fields, were formulated in a first approximation. It is seen that
dislocation field in nanocrystals influence mechanical and transport proper-
ties. Then, the obtained results have several applications in nanotechnology
and in other sectors of applied sciences.
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Appendix

In Eqs. (17), (19), (20) and (21)1 the elements of the matrix {A4γ} =
{Am/n} are the following:

A1/1 = ρδir, A1/2 = ... = A1/8 = 0, A1/9 = ρvkδir, A1/10 = −∂σkr
∂εij

,

A1/11 = −∂σkr
∂qi

, A1/12 = − ∂σkr
∂Vijp

δkl, A
1/13 = −∂σkr

∂T,i
, A1/14 = − ∂σkr

∂aij,p
δkl,
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A2/1 = 0, A2/2 = ρ
∂e

∂εij
, A2/3 = ρ

∂e

∂T
, A2/4 = ρ

∂e

∂aij
,

A2/5 = ρ
∂e

∂qi
, A2/6 = ρ

∂e

∂Vijp
, A2/7 = ρ

∂e

∂T,i
, A2/8 = ρ

∂e

∂aij,p
,

A2/9 = −σjiδjk, A2/10 = ρvk
∂e

∂εij
, A2/11 = ρvk

∂e

∂qi
+ δik,

A2/12 = ρvk
∂e

∂Vijp
δkl, A2/13 = ρvk

∂e

∂T,i
, A2/14 = ρvk

∂e

∂rij,p
δkl

A3/1 = 0, A3/2 = rsrδmiδjs + rmsδirδjs, A3/3 = 0, A3/4 = δimδjr,

A3/5 = ... = A3/8 = 0, A3/9 = −rsrδmiδjs − rmsδirδjs,

A3/10 = A3/11 = 0, A3/12 = δimδjrδpl, A3/13 = A3/14 = 0,

A4/1 = 0, A4/2 = qkδkj , A4/3 = A4/4 = 0, A4/5 = 1,

A4/6 = ... = A4/8 = 0, A4/9 = −qk, A4/10 = 0,

A4/11 = vk, A4/12 = ... = A4/14 = 0,

A5/1 = 0, A5/2 = Vsrpδmiδsj + Vmspδriδsj + Vmrsδpiδsj ,

A5/3 = ... = A5/5 = 0, A5/6 = δimδrj A5/7 = A5/8 = 0,

A5/9 = −Vsrpδmiδsj − Vmspδriδsj − Vmrsδpiδsj ,

A5/10 = A5/11 = 0, A7/12 = vsδimδrjδsl, A5/13 = A5/14 = 0. (58)
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[19] D. Germanò, L. Restuccia. Thermodynamics of piezoelectric media with
dislocations. In Series on Advances in Mathematics for Applied Sci-
ences, Applied and Industrial Mathematics in Italy II, eds V. Cutello,
G. Fotia, L. Puccio, 75: 387-398, World Scientific, Singapore, 2007.
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