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Abstract

A non symmetric version of Hopfield networks subject to state-
multiplicative noise, is considered in an anisotropic norm setup. Such
networks arise in the context of visuo-motor control loops and may,
therefore, be used to mimic their complex behavior. In this paper, we
adopt the Lur’e - Postnikov systems approach to generalize a Bounded
Real Lemma like result of generalized Hopfield networks, to compute
their anisotropic norm.
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1 Introduction

Hopfield networks ([19]) are symmetric recurrent neural networks which ex-
hibit motions in the state space which converge to minima of energy. Sym-
metric Hopfield networks can be used to solve practical complex problems
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such as implementation of associative memory, linear programming solv-
ing and optimal guidance problems solution. Recurrent networks which are
non symmetric stochastic versions of Hopfield networks play an important
role in understanding human motor tasks involving visual feedback (see ([2],
([3]) and the references therein). When such networks are used to model
human motor tasks involving visual feedback ([2]) ([3]) the effects of state-
multiplicative noise and pure time delay become dominant. It is mentioned
in ([2]) that besides stick balancing at the fingertip, state-multiplicative
noise arises at every level of the human nervous system (e.g. reflexes ([4]),
motor control ([5]). The deterministic discrete-time version of this network
has been considered in ([6]) whereas the stochastic continuous-time version
of this network driven by white noise, has been considered in ([7]) where the
stochastic stability of a network of form (6) given in the next section has
been analyzed. In this latest paper it has been shown that the network is
almost surely stable when the time derivative energy dE

dt ≤ 0 is replaced by
LE ≤ 0 where LE is the infinitesimal generator associated with the Itô type
stochastic equation describing the continous-time Hoptfield network.

In the present paper, we analyze the anisotropic-norm of discrete-time
Hopfield neural networks, which arises when the exogenous signals are nei-
ther purely white noise, or band limited. When the exogenous signals are
of white noise type, then H2− norm analysis is required whereas in the case
of deterministic bounded energy signals, the framework of the H∞-norm
([8]) is to be applied . When the input w(t) of a discrete-time system Σ
is a sequence of zero mean independent random vectors of unit covariance,
its H2-norm is given, in terms of its output y(t), t = 0, 1, ..., by ||Σ||2 :=√

lim`→∞
1
`

∑`
t=0E[|y(t)|2] whereas for lim`→∞

1
`

∑`
t=0E[|w(t)|2] <∞, the

H∞ - norm of Σ, is associated with lim`→∞
1
`

∑`
t=0E[|y(t)|2−γ2|w(t)|2] < 0.

However, many practical cases involve a compromise between the H2 and the
H∞-norm setups since the former may not be suitable when the considered
signals are strongly colored (e.g. periodic signals). On the other hand, H∞-
optimization may poorly predict performance when these signals are weakly
colored (e.g. white noise). Mixed H2/H∞ results have been considered in
([9]) and ([10]). A promising alternative to accomplish such compromise is
to use the so-called a-anisotropic norm (see e.g. ([11]), ([12]), ([13]) since
it offers and intermediate topology between the H2 and H∞ norms. More
precisely, if the colored signal is generated by an m-dimensional exogenous
input, the a-anisotropic norm |||F |||a of a stable system F has the property
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(see, for instance ([14]) :

1√
m
||F ||2 = |||F |||0 ≤ |||F |||a ≤ ||F ||∞ = lim

a→∞
|||F |||a.

where

|||Σ|||a := supG∈Ga
||ΣG||2
||G||2

(1)

and where it is assumed that the disturbance wk is generated by a coloring
filter G, the input of which is a white noise. The class of admissible filters
G with anisotropy less than a, namely Ā(G) < a, is denoted by Ga where
the mean anisotropy of G, is defined here as

Ā(G) = −1

2
ln det

(
mE

[
w̃(0)w̃(0)T

]
Tr (E [w(0)w(0)T ])

)
, (2)

where E[w̃(0)w̃(0)T ] is the covariance of the prediction error w̃(0) := w(0)−
E[w(0)|w(t), t < 0]. Note that in cases where G is a linear system without
multiplicative noise, then its output w has a Gaussian distribution, the origi-
nal entropy-theoretic mean anisotropy definition of ([11]) can be used, which
is equivalent ([15]) in such a case to (2). When G is, however, corrupted
with multiplicative noise as considered in this paper, the above equivalent
definition for Ā(G) no longer holds, and the higher moments than just the
spectral density are involved. In spite of this fact, in the present paper, we
adopt as in ([16]) an anisotropic-norm setup, where the simple definition of
(2) in terms of second order moments only of w(0) and its estimate is used.
This definition leads to results which are consistent (see ([16])) both with
the anisotropic norm-related results of ([14]) and ([17]) for linear systems
without multiplicative noise and with the H∞-norm related results of ([18])
for systems with multiplicative noise.

At this point, it is useful to note again, that the mean anisotropy Ā(G) of
w(t) is just a measure of its whiteness. Namely, if w(t) is white, then it can
not be estimated from its past values (i.e. its optimal estimate is just zero)
and w̃(0) = w(0) which leads to Ā(G) = 0. On the other hand, if w(t) can
be perfectly estimated, then Ā(G) by the above definition, tends to infinity.
Note that whenever the transfer matrix function corresponding to G is rank
deficient (namely w has frequency bands with zero power spectrum) on some
finite interval of frequencies, then Ā(G) also tends to infinity. Following
([11]) we denote the class of admissible filters G with Ā(G) < a by Ga. The
anisotropic norm |||F |||a of the system F is then defined by

|||F |||a := supG∈Ga
||FG||2
||G||2

(3)
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Throughout the paper Rn denotes the n dimensional Euclidean space,
Rn×m is the set of all n×m real matrices, Z+ is the set of all nonnegative
integers, Tr stands for the trace of a square matrix and the notation X>0,
(respectively, X≥0) for X ∈ Rn×n means that X is symmetric and positive
definite (respectively, semi-definite). Also ||w||2 for w ∈ Rn will denote wTw.
Throughout the paper (Ω,F , P ) is a given probability space. Expectation
is denoted by E [·] and conditional expectation of x on the event θ(t) = i is
denoted by E[x|θ(t) = i].

2 Problem formulation

The neural network proposed by Hopfield, can be described by a system of
ordinary differential equations of the form

v̇i(t) = aivi(t) +
n∑
j=1

Fijgj(vj(t)) + c̄i =: κi(v), 1 ≤ i ≤ n (4)

where vi represents the voltage on the input of the i-th neuron, ai < 0, 1 ≤
i ≤ n, Fij = Fji and the activations gi(·), i = 1, ..., n are C1–bounded and
strictly increasing functions. The stability of this network is analyzed in
([19]) by defining the network energy functional:

E(v) = −
n∑
i=1

ai

∫ vi

0
u
dgi(u)

du
du (5)

−1

2

n∑
i,j=1

Fijgi(vi)gj(vj)−
n∑
i=1

c̄igi(vi)

which is a Lyapunov function if gi are increasing activation functions since

dE
dt

= −
∑ dgi(vi)

dvi
κi(v)2 ≤ 0

with κi(v) defined in (4). The zero rate of the energy is obtained only in the
equilibrium points, also referred to as attractors, where κi(v

0) = 0, 1 ≤ i ≤
n. However, the neural network may be subject to environmental noise and
to connection matrix perturbations which can be modelled as

∑n
j=1 bijwj(t)

added to the right hand side of (4). The network subject to the combination
of these two effects can be then described in matrix form as:

v̇(t) = Av(t) + Fg(v(t)) +Bw(t) + C̄ (6)
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where

A := diag(a1, ..., an),
B = [bij ]i,j = 1, ..., n, F = [Fij ]i,j=1,...,n

C̄ :=
[
c̄1 c̄2 ... c̄n

]T
, v :=

[
v1 v2 ... vn

]T
and where g(v) :=

[
g1(v1) g2(v2) ... gn(vn)

]T
, y(t) denoting the ob-

served output of the network and w(t) = (w1(t), ..., wm(t))T is the driving
process, to be specified in the sequel. To analyze the effect of w(t) we first
define the error of the Hopfield network output with respect to its equi-
librium points by x(t) = v(t) − v0 and assume that the errors vector x(t)
satisfy:

ẋ(t) = Ax(t) + Ff(x(t)) +Bw(t) (7)

where by definition, f(x) = g(x+ v0)− g(v0).
In the present paper a discrete-time version of (7) is used in which mul-

tiplicative white noise perturbations are added, namely

x(t+ 1) = A(t)x(t) + B(t)w(t) + Ff(x(t))
y(t) = Cx(t) +Dw(t), t = 0, 1, ...

(8)

with

A(t) := A0 +
∑r

i=1 ξi(t)Ai
B(t) := B0 +

∑r
i=1 ξi(t)Bi ,

where ξ(t) = (ξ1(t), ..., ξr(t))
T is a sequence of independent random vectors

ξ : Ω→ Rr on a probability space (Ω,F ,P) and y(t) stands for the network
output. It is assumed that {ξ(t)}t≥0 satisfies the conditions E [ξ(t)] = 0 and
E
[
ξ(t)ξT (t)

]
= Ir, t = 0, 1, ... . The matrices of the state space model (8)

have the dimensions as follows: Ai ∈ Rn×n, Bi ∈ Rn×m, i = 0, 1...., r, C ∈
Rp×n, D ∈ Rp×m.

In the remaining part of the paper it will be assumed that the input
w(t) ∈ Rm is a vector valued signal of random variables, generated by the
following linear stochastic filter G with multiplicative noise

xf (t+ 1) = Af (t)xf (t) + Bf (t)v(t)
w(t) = Cfxf (t) +Dfv(t), t = 0, 1, ...

(9)

where

Af (t) := Af0 +
∑r

i=1 ξi(t)Afi
Bf (t) := Bf0 +

∑r
i=1 ξi(t)Bfi .
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where the order nf and the matrices Afi ∈ Rnf×nf , Bfi ∈ Rnf×m, i =
0, 1...., r, Cf ∈ Rm×nf , Df ∈ Rm×m are not prefixed and v(t) ∈ Rm are
white noise vectors with the properties E [v(t)] = 0 and E

[
v(t)vT (t)

]
=

Im, t = 0, 1, ... . It is assumed that {ξ(t)}t≥0 and {v(t)}t≥0 are independent
stochastic processes.

In the forthcoming analysis, we will assume that the components fi, i =
1, ..., n of f(x(t)) depend only on the i− th component xi of x and that they
satisfy the sector conditions 0 ≤ xifi(xi(t)) ≤ σix

2
i (t) which are equivalent

to

−Fi(xi(t), fi) := fi(xi(t))(fi(xi(t))− σixi(t)) ≤ 0. (10)

We shall further assume that

∂fi
∂xi

(xi(t)) ≤ σi, i = 1, ..., n, (11)

which although somewhat restrictive is, nevertheless, fulfilled by the usual
nonlinearities as saturation, sigmoid, etc., used in the neural networks. The
latter assumption allows a useful application of the Mean Value Theorem.
Consider fi(s) where s ∈ [a, b]. It then follows that ∃c ∈ [a, b], such that

fi(s) = fi(a) + ∂fi
∂xi

(c)(s − a) ≤ fi(a) + σi(s − a). Therefore,
∫ b
a fi(s)ds ≤

fi(a)(b− a) + σi
2 (b− a)2.

The following definitions of stability andH2 norm of the nonlinear system
(8) are needed in the sequel.

Definition 1. A stochastic system with multiplicative noise of form (8)
with Bi = 0, i = 0, 1, ..., r is called exponentially stable in mean square
(ESMS) if there exist β ≥ 1 and ρ ∈ (0, 1) such that E

[
|Φ(t, s)x(s)|2

]
≤

βρt−sE
[
|x(s)|2

]
for all t ≥ s ≥ 0 and for all x(s) ∈ Rn satisfying (10),

where Φ(t, s) denotes the fundamental matrix solution of (8).

Definition 2. The H2-type norm of the ESMS system (8) is defined as

‖F‖2 =

[
lim
`→∞

1

`

∑̀
t=0

E
[
yT (t)y(t)

]] 1
2

,

where {y(t)}t∈Z+ is the output of the system (8) with zero initial conditions
generated by the sequence {w(t)}t∈Z+ of independent random vectors with
the property that E [w(t)] = 0 and E

[
w(t)wT (t)

]
= Im, {w(t)}t∈Z+ being

assumed independent of the stochastic process {ξ(t)}t∈Z+.
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Similar definitions with the above ones may be used for the case of linear
systems corrupted with multiplicative noise as are the filters G of form (9).
In this latest case, the following result provides a procedure to compute the
H2 type norm of an ESMS system of form ([18]).

Lemma 1 The H2 type norm of the ESMS system (9) is given by

‖G‖2 =
(
Tr
(
CfY C

T
f +DfD

T
f

)) 1
2 ,

where Y ≥ 0 is the solution of the generalized Lyapunov equation

Y =

r∑
i=0

(
AfiY A

T
fi

+BfiB
T
fi

)
.

The problem analyzed in the following section is to determine conditions
under which the following inequality holds

sup
G∈Ga

‖FG‖2
‖G‖2

< γ

for a given γ > 0, with the ESMS systems F and G having the state space
equations (8) and (9) respectively.

3 Bounded Real Lemma type Result

Introduce the Lyapunov-Krasovskii–type function:

V (x (t)) = xT (t)Xx (t)+2

n∑
k=1

λk

∫ xk(t)

0
fk (s) ds

where X > 0 is a positive definite matrix and λk ≥ 0. By the definition
of the H2-type norm, it follows that the condition supG∈Ga

‖FG‖2
‖G‖2 < γ is

equivalent with the condition

lim
`→∞

1

`

∑̀
t=0

E
[
|y(t)|2 − γ2|w(t)|2

]
< 0 (12)

for all w(t) generated by filters G ∈ Ga.
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Using (8) it follows that

V (x (t+ 1))− V (x (t))
= xT (t+ 1)Xx(t+ 1)− xT (t)Xx(t)

+2
∑n

k=1 λk
∫ xk(t+1)
xk(t)

fk (x(s)) ds

= (A(t)x(t) + B(t)w(t) + Ff(x(t)))T X
× (A(t)x(t) + B(t)w(t) + Ff(x(t)))
−xT (t)Xx(t)− yT (t)y(t) + xT (t)CTCx(t)
+xT (t)CTDw(t) + wT (t)DTCx(t) + wT (t)DTDw(t)+

2
∑n

k=1 λk
∫ xk(t+1)
xk(t)

fk (x(s)) ds

where we added the zero term yT (t)y(t)−(Cx(t)+Dw(t))T (Cx(t)+Dw(t)).
Collecting terms we readily obtain

yT (t)y(t) = xT (t)
(
A(t)TXA(t)−X + CTC

)
x(t)

+wT (t)
(
DTD + B(t)TXB(t

)
)w(t)

+wT (t)
(
DTC + B(t)TXA(t)

)
x(t)

+xT (t)
(
CTD +A(t)TXB(t)

)
w(t)

+fT (x(t))FTXFf(x(t)) + xT (t)A(t)TXFf(x(t))
+fT (x(t))FTXA(t)x(t)
+wT (t)BTXFf(x(t)) + fT (x(t))FTXB(t)x(t)
+xT (t)Xx(t)− xT (t+ 1)Xx(t+ 1)

+2
∑n

k=1 λk
∫ xk(t+1
xk(t)

fk (x(s)) ds .

Noting that the properties of the random sequences {ξi(t)}t≥0, i = 1, ..., r
imply
E
[
ATXA

]
=
∑r

i=0A
T
i XAi, E

[
BTXB

]
=
∑r

i=0B
T
i XBi and E

[
ATXB

]
=∑r

i=0A
T
i XBi, it follows from the above equation that

E
[
yT (t)y(t)

]
= E

[
xT (t)

(∑r
i=0A

T
i XAi −X + CTC

)
x(t)

+wT (t)
(
DTD +

∑r
i=0B

T
i XBi

)
w(t)

+wT (t)
(
DTC +

∑r
i=0B

T
i XAi

)
x(t)

+xT (t)
(
CTD +

∑r
i=0A

T
i XBi

)
w(t)

+fT (x(t))FTXFf(x(t)) + xT (t)AT0XFf(x(t))
+fT (x(t))FTXA0x(t) + wT (t)BT

0 XFf(x(t))
+fT (x(t))FTXB0w(t) + V (x(t))− V (x(t+ 1))

]
+2E

∑n
k=1 λk

∫ xk(t+1)
xk(t)

fk (x(s)) ds .
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However,

2

n∑
k=1

λk

∫ xk(t+1)

xk(t)
fk (x(s)) ds ≤ 2

n∑
k=1

fk(xk(t))(xk(t+ 1)− xk(t))λk

+ σk(xk(t+ 1)− xk(t))2λk (13)

= 2fT (x(t))Λ(x(t+ 1)− x(t)) + (x(t+ 1)− x(t))TSΛ(x(t+ 1)− x(t))

where S := diag (σ1, . . . , σn) and Λ := diag (λ1, . . . , λn) Therefore,

E
[
yT (t)y(t)

]
≤ E

[
xT (t)

(
r∑
i=0

ATi XAi −X + CTC

)
x(t)

+wT (t)

(
DTD +

r∑
i=0

BT
i XBi −

1

q
I

)
w(t) +wT (t)

(
DTC +

r∑
i=0

BT
i XAi

)
x(t)

+xT (t)

(
CTD +

r∑
i=0

ATi XBi

)
w(t) +fT (x(t))FTXFf(x(t)) + xT (t)AT0XFf(t)

+fT (x(t))FTXA0x(t) +wT (t)BT
0 XFf(x(t)) + fT (t)FTXB0w(t)

+V (x(t))− V (x(t+ 1))] + E
[
2fT (x(t))Λ(x(t+ 1)− x(t))

+(x(t+ 1)− x(t))TSΛ(x(t+ 1)− x(t)) +
1

q
wT (t)w(t)

]
(14)

where we added and subtracted 1
qw

T (t)w(t). Denoting Ā0 = A0 − I and

Āi = Ai for i = 1, ..., r, from the above equation it follows that

E
[
yT (t)y(t)

]
≤ E

[
xT (t)

(∑r
i=0A

T
i XAi −X + CTC

)
x(t)

+wT (t)
(
DTD +

∑r
i=0B

T
i XBi − 1

q I
)
w(t)

+wT (t)
(
DTC +

∑r
i=0B

T
i XAi

)
x(t)

+xT (t)
(
CTD +

∑r
i=0A

T
i XBi

)
w(t)

+V (x(t))− V (x(t+ 1)) + 1
qw

T (t)w(t)

+xT (t)
(∑r

i=0 Ā
T
i SΛĀi

)
x(t)

+wT (t)
(∑r

i=0B
T
i SΛBi

)
w(t)

+fT (x(t))
(
λF + FTΛ + FTSΛF + FTXF

)
f(x(t))

+xT (t)
(∑r

i=0 Ā
T
i SΛBi

)
w(t)

+wT (t)
(∑r

i=0B
T
i ΛSĀi

)
x(t)

+xT (t)
(
AT0 Λ + ĀT0 SΛF +AT0XF

)
f(x(t))

+fT (x(t))
(
ΛF + FTΛSĀ0 + FTXA0

)
x(t)

+wT (t)
[
BT

0 Λ +BT
0 SΛF +BT

0 XF
]
f(x(t))

+fT (x(t))
(
ΛB0 + FTΛSB0 + FTXB0

)
w(t)

]
.

(15)
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Defining
χ(t) := [xT (t), wT (t), fT (t)]T (16)

one obtains from (15) that

E
[
|y(t)|2 − γ2|w(t)|2

]
≤ E

[
V (x(t))− V (x(t+ 1)) +

(
1
q − γ

2
)
wT (t)w(t)

]
+E[χT (t)Θχ(t)]

(17)

where Θ = ΘT having the block elements

Θ11 =
∑r

i=0A
T
i XAi −X + CTC +

∑r
i=0 Ā

T
i SΛĀi

Θ12 = CTD +
∑r

i=0A
T
i XBi +

∑r
i=0 Ā

T
i SΛBi

Θ13 = AT0 Λ +AT0XF + ĀT0 SΛF
Θ22 = DTD +

∑r
i=0B

T
i XBi − 1

q I +
∑r

i=0B
T
i SΛBi

Θ23 = BT
0 Λ +BT

0 SΛF +BT
0 XF

Θ33 = ΛF + FTΛ + FTSΛF + FTXF .

(18)

The inequality (17) latter may be, however, written as F0 (χ) ≥ 0 where
F0 is a quadratic function with respect to its arguments. According with
the S– procedure based method (see e.g. ([20])), these conditions subject
to the sector constraints (10) are fulfilled if there exist τi ≥ 0, i = 1, . . . , n
such that F0 (χ) −

∑n
k=1 τkFk (x, f) ≥ 0 for all L2 bounded inputs w(t).

Denoting T := diag (τ1, . . . , τn) we, therefore, obtain that (17) is fulfilled if
the following holds:

E
[
|y(t)|2 − γ2|w(t)|2

]
≤ E

[
V (x(t))− V (x(t+ 1)) +

(
1
q − γ

2
)
wT (t)w(t)

]
+E[χT (t)Lχ(t)]

(19)

where

L = LT ,L = [Lij ]i,j=1,2,3 (20)

with

L11 =
∑r

i=0A
T
i XAi −X + CTC +

∑r
i=0 Ā

T
i SΛĀi

L12 = CTD +
∑r

i=0A
T
i XBi +

∑r
i=0 Ā

T
i SΛBi

L13 = AT0 Λ +AT0XF + ĀT0 SΛF + 1
2ST

L22 = DTD +
∑r

i=0B
T
i XBi − 1

q I +
∑r

i=0B
T
i SΛBi

L23 = BT
0 Λ +BT

0 SΛF +BT
0 XF

L33 = ΛF + FTΛ + FTSΛF + FTXF − T

(21)
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where we have used the fact that∑n
k=1 τkFk =

∑n
k=1(τkfkσkxk − τkf2k )

= −fTTf + 1
2x

TSTf + 1
2f

TTSx.
(22)

Since the systems (8) and(9) are ESMS,

lim
`→∞

1

`
E [V (x(0))− V (x(`))] = 0,

and, therefore, collecting terms and adding and subtracting γ2wT (t)w(t),
the following relation is obtained:

lim`→∞
1
`

∑`
t=0E

[
|y(t)|2 − γ2|w(t)|2

]
≤
(
1
q − γ

2
)

lim`→∞
1
`

∑`
t=0E

[
wT (t)w(t)

]
+ lim`→∞

1
`

∑`
t=0E[χT (t)Lχ(t)]

(23)

We are now in position to present our main result.
Theorem 1 The system (8), (9) is stochastically stable and its anisotropic

norm is less than γ > 0 if there exist a q ∈
(
0,min

(
γ−2, ‖F‖−2∞

))
, a sym-

metric matrix X > 0, and diagonal matrices Λ > 0, T > 0, satisfying L < 0
with L defined by (20), (21) and

det

(
1

q
− γ2

)
Ψ−1q ≤ e−2a (24)

Ψq :=
1

q
I −

r∑
i=0

BT
i XBi −DTD −

r∑
i=0

BT
i SΛBi > 0. (25)

Proof : We further denote η = [xT (t)fT (x(t))]T ,M11 =

[
L11 L13
L31 L33

]
,

M12 =

[
L12
L32

]
, M21 = MT

12 and , M22 = L22 = −Ψq. Therefore, based

on (23) it follows that

lim`→∞
1
`

∑`
t=0E

[
|y(t)|2 − γ2|w(t)|2

]
≤
(
1
q − γ

2
)

lim`→∞
1
`

∑`
t=0E

[
wT (t)w(t)

]
+ lim`→∞

1
`

∑`
t=0{E[ηT (t)M11η(t)]

+E[ηT (t)M12w(t)] + E[wT (t)M21η(t)]
E[wT (t)M22w(t)]} < 0

(26)
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Completing the right hand side to squares we readily obtain

lim`→∞
1
`

∑`
t=0E

[
|y(t)|2 − γ2|w(t)|2

]
≤
(
1
q − γ

2
)

lim`→∞
1
`

∑`
t=0E

[
wT (t)w(t)

]
− lim`→∞

1
`

∑`
t=0E [w(t)− w+(t)]

T
Ψq [w(t)− w+(t)]

+ lim`→∞
1
`

∑`
t=0E

[
ηT (t)

(
M11 −M12M−122M21

)
η(t)

] (27)

where w+(t) := Ψ−1q MT
12η(t). Then, adding and subtracting Ψ

−1/2
q v(t) to

w+(t) and using the properties of {v(t)}t≥0 one obtains

lim`→∞
1
`

∑`
t=0E

[
|y(t)|2 − γ2|w(t)|2

]
+2TrDfΨ

1
2
q −m

≤
(
1
q − γ

2
)

lim`→∞
1
`

∑`
t=0E

[
wT (t)w(t)

]
− lim`→∞

1
`

∑`
t=0E P(t)

+ lim`→∞
1
`

∑`
t=0E

[
ηT (t)

(
M11 −M12M−122M21

)
η(t)

] (28)

where we denoted

P(t) := [w(t)− w∗(t)]T Ψq [w(t)− w∗(t)]

with w∗(t) := Ψ−1q MT
12η(t)+Ψ

−1/2
q v(t). It follows that P(t) ≥ 0 and P(t) =

0 for w(t) = w∗(t). This latest case corresponds to the situation when
fi(xi) = 0, i = 1, ..., n, the filter G has the state xf (t) equal to the state x(t)
of F so that

Cf = Ψ−1q L12T

Df = Ψ
− 1

2
q .

(29)

Note that we could, therefore, initially take in (9) and order n rather than
nf for the filter G, without loss of generality.

Based on the expression (29) of Df and since xf (t) = x(t), from the
second equation in (9) it follows that

E
[
w̃(0)w̃T (0)

]
= Ψ−1q . (30)

Further it will be shown that under the condition (24) from the statement,

for all ESMS filters G ∈ Ga having Df = Ψ
− 1

2
q the following condition is

accomplished

−m+

(
1

q
− γ2

)
‖G‖22 ≤ 0. (31)
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Indeed, since G ∈ Ga and since Df = Ψ
− 1

2
q it follows from (2) that

det
mΨ−1q
‖G‖22

≥ e−2a. (32)

Taking into account (24) and the above inequality it follows that

det
mΨ−1q
‖G‖22

≥ det

(
1

q
− γ2

)
Ψ−1q

from which one directly obtains (31). Using (31), (28), and the equation
for Df in (29), it follows that ||FG||2/||G||2 ≤ γ provided that M11 −
M12M−122M21 < 0.

Let us consider now the more general case, for which Df does not nec-
essarily satisfy (29), for a certain filter G ∈ Ga satisfying, therefore, the
condition

−1

2
ln det

mDfD
T
f

‖G‖22
≤ a . (33)

From the above condition and from the assumption (24) it follows that

det

(
1

q
− γ2

)
Ψ−1q ≤ det

mDfD
T
f

‖G‖22
. (34)

Assume that Df is positive semidefinite. This is not a restrictive assumption
since E[yT (t)y(t)] and E[wT (t)w(t)] depend by (8), (9) and Lemma 1 on
DfD

T
f and therefore the computations remain the same if the arbitrary

matrix Df is replaced by the semidefinite matrix D̃f given by the Cholesky
factorization of DfD

T
f .

Using the property det(A) ≤ (Tr(A)/m)m for any A ≥ 0 ([21]), from
the above inequality one obtains

Tr

(
DfΨ

1
2
q

)
≥
(

1

q
− γ2

) 1
2

m
1
2 ‖G‖2 (35)

and thus (
1
q − γ

2
)
‖G‖22 − 2Tr

(
DfΨ

1
2
q

)
+m

≤
(
1
q − γ

2
)
‖G‖22 − 2

(
1
q − γ

2
) 1

2
m

1
2 ‖G‖2 +m

=

((
1
q − γ

2
) 1

2 ‖G‖2 −m
1
2

)2

.

(36)
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From the above inequality it follows that if(
1

q
− γ2

)
‖G‖22 = m, (37)

the left hand side of (36) is nonpositive and, therefore, from (28) it follows
that ‖FG‖2/‖G‖2 ≤ γ since ‖FG‖2/‖G‖2 and Ā(G) are invariant under
scalar scaling of G, and and since M11 −M12M−122M21 < 0 iff L < 0.

4 An Example

Consider the short period dynamics of an air vehicle at a selected operating
point, [

α̇
q̇

]
=

[
−1 20
−2 −10

] [
α
q

]
+

[
0.2
2

]
tanh(δ)

where α is the angle of attack, q is the pitch rate and δ is the elevon angle
commanded by the servo system modelled as:

δ̇ = −100(δ − δc)

and where the control is given by δc = (0.9044+ν)α−0.6252q+w. The signal
ν represents white noise corrupting gain, due to noise in gain scheduling
parameter (e.g. dynamic pressure). The servo is subject to soft saturation
due to the effect of aerodynamic hinge moments at large elevon angles. Our
aim is to analyze the effect of the measurement noise w on the pitch rate
y = q in the sense of the anisotropic norm. Augmenting the state vector to
be x = col{α, q, δ} and taking a sample time of T = 0.1 sec and a zero-order
hold, the discrete-time version of the above system is given by (8) where:

A0 =

 0.9881 0.1892 0
−0.0189 0.9030 0
0.5724 −0.3087 0.3679

 , B =

 0.0039
0.0190
−0.0033



C =
[

0 1 0
]
, D = 0, F =

 0 0 0.0039
0 0 0.0190
0 0 −0.0033


and where fi(xi) = tanh(xi). Therefore, σi = 1. The above gain noise ν is
represented by the following matrix

A1 =

 0.15 0 0
0 0.15 0

−0.009482 0 0.05182


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Note that fi, i = 1, 2 are multiplied in (8) by zero and, therefore, do not
play any role. The noise w has been simulated as the output of a low-pass
filter with a standard white noise input sequence.
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The mean anisotropy of the noise is depicted in Fig. 1 as a function of the
filter time constant. A time constant of 0.0085 sec . has been taken, leading
to the anisotropy of a = 0.05. In Fig. 2. the H∞-norm (solid blue line)
is depicted, of the system replacing the non-linearity by a series of ”scale
factors” in [0, 1] which represent the incremental gain of f3(x3) = tanh(x3).
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The global H∞-norm (black dash-dotted line) has been computed using the
results of ([14]) and YALMIP ([22]) for a that tends to infinity, serves, as
could be expected, as an upper bound to the case-wise H∞-norms (solid
blue line). Similarly the anisotropic norm (dashed red line) for the same
”scale factors” replacing the non-linearity are depicted in Fig. 2, along with
the anisotropic norm-bound γ (dotted green line) derived from Theorem 1.
Indeed the global anisotropic norm bound γ, provides an upper bound for
the case-wise scale factors (red dashed line), and is lower than the global
H∞-norm (black dash-dotted line), demonstrating, therefore, the reduced
conservatism in the anisotropic-norm with respect to the H∞-norm. The
above system has been simulated, and the results are depicted in Fig. 3,
where Fig. 3a shows δ before and after the soft saturation by the tanh
function, and Fig. 3b, depicts the pitch rate y = q. We note that the ratio
0.07 between the standard deviation of y and w, is less than γ = 0.363
predicted by Theorem 1.
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Figure 3: Simulation Results : a) System output b) Control Input

5 Conclusions

A class of stochastic Hopfield networks subject to state-multiplicative noise
has been considered. Stochastic stability and disturbance attenuation anal-
ysis in an anisotropic-norm setup has been derived. The results can be
applied to e.g. a stick balancing related model, inspired by ([3]) and ([23])
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which includes such state-multiplicative noise. Such application is left as a
topic for future research.

References

[1] S. Haykin, Neural Networks - A Comprehensive, Prentice-Hall, New-
Jersey, 1999.

[2] J. L. Cabrera, R. Bormann, C. Eurich, T. Ohira and J. Milton, ”State-
dependent noise and human balance control”, Fluctuation and Noise
Letters, 4, L107–L118, 2001.

[3] J. L. Cabrera and J.G. Milton, ”On-Off Intermittency in a Human
Balancing Task”, Physical Review Letters, 89(15), 158702, 2002.

[4] A. Longtin, J.G. Milton, H.E. Bos and C. Mackey, ”Noise and Criti-
cal Behavior of the Pupil Light Reflex at Oscillations Onset”, Physics
Review, (A41), pp. 6992–7005, 1990.

[5] C.M. Harris and D.M. Wolpert, ”Signal Dependent Noise Determines
Motor Planning”, Nature (London) , 394, pp. 780–784, 1998.

[6] D. Banjerdpongchai and H. Kimura, ”Robust Analysis of Discrete-Time
Lur’e Systems with Slope Restrictions using Convex Optimization”,
Asian Journal of Control, 4, pp. 119–126, 2002.

[7] S. Hu, X. Liao and X. Mao, (2003). ”Stochastic Hopfield Neural Net-
works”, Journal of Physics A: Mathematical and General, 36, pp. 1–15,
2003.

[8] G. Zames, ”Feedback and optimal sensitivity: model reference trans-
formations, multiplicative seminorms and approximate inverses”’ IEEE
Trans. on Automatic Control, vol. 26, pp. 301–320, 1981.

[9] D.S. Bernstein and W.M. Haddad, ” LQG Control with and H∞ Per-
formance Bound a Riccati equation Approach”, IEEE Transactions on
Automatic Control, vol. 34, 293–305, 1989.

[10] H. Rotstein and M. Sznaier, ”An Exact Solution to General Four
Block Discrete-Time Mixed H2/H∞ problems via Convex Optimiza-
tion”, IEEE Trans. on Automatic Control, vol. 43, pp. 1475–1481, 1998.



96 Adrian-Mihail Stoica and Isaac Yaesh

[11] I.G. Vladimirov, A.P. Kurdyukov and A.V. Semyonov, ”Anisotropy of
signals and entropy of linear time-invariant stochastic systems”, Dok-
lady Russ. Acad. Sci, 342, 5, pp. 583-585, 1995.

[12] I.G. Vladimirov, A.P. Kurdyukov and A.V. Semyonov, ”On computing
the anisotropic norm of linear discrete-time-invariant systems”,IFAC
13th Triennial World Congress, San Francisco, USA, pp. 179–184,
1996.

[13] M.M. Tchaikovsky, A.P. Kurdyukov and V.N. Timin, ”A Convex For-
mulation of Strict Anisotropic Norm Bounded Real Lemma”, arXiv
1108.5140v5[cs.SY], 2011.

[14] A.P. Kurdyukov, E. A. Maksimov and M.M. Tchaikovsky, ”Anisotropy-
Based Bounded Real Lemma” , Proceedings of the 19th International
Symposium on Mathematical Theory of Networks and Systems-MTNS,
Budapest, Hungary, 2010.

[15] Y.A. Rozanov, Stationary Random Processes, Nauka, Moscow, 1990.

[16] A.-M. Stoica and I. Yaesh, ”A bounded real lemma type-result with
respect to the anisotropic norm setup for stochastic systems with mul-
tiplicative noise”, Automatica, 84, 174–180, 2017.

[17] M. M. Tchaikovsky and A.P. Kurdyukov, ”Strict Anisotropic Norm
Bounded Real Lemma in Terms of Matrix Inequalities”, Doklady Math-
ematics, vol. 84, no. 3, pp. 895–898, DOI: 10.1134/S1064562411070167,
2011.

[18] V. Dragan, T. Morozan and A.-M. Stoica, Mathematical Methods in
Robust Control of Discrete-Time Linear Stochastic Systems, Springer,
2010.

[19] S. Haykin, (1999). Neural Networks - A Comprehensive, Prentice-Hall,
New-Jersey, 1999.

[20] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear matrix
inequalities in system and control theory Philadelphia, PA: SIAM, 1994.

[21] D.S. Bernstein, Matrix Mathematics: Theory, Facts and Formulas with
Application to Linear Systems Theory, Princeton University Press,
2005.



Hopfield Networks in an Anisotropic Norm Setup 97
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