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Abstract

In this paper we define certain difference sequence spaces via n−nor-
med space and a sequence of Orlicz function without convexity. We
also make an effort to investigate their structural and some topologi-
cal properties. Finally, we broaden this idea to double sequences and
establish a new matrix theoretic approach for construction of double
sequence spaces over n−normed spaces.
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1 Introduction and preliminaries

In [8] Gähler introduced an attractive theory of 2-normed spaces. The notion
was further generalized by Misiak [24] by introducing n-normed spaces. Also
these spaces were studied by Gunawan ([9],[10]) in more detail. In [11]
Gunawan and Mashadi gave a simple way to derive an (n − 1)-norm from
the n-norm. Let n ∈ N and X be a linear space over the field R of reals
of dimension d, where d ≥ n ≥ 2. A real valued function ||·, · · · , ·|| on Xn

satisfying the following four conditions:
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1. ||x1, x2, · · · , xn|| = 0 if and only if x1, x2, · · · , xn are linearly dependent
in X;

2. ||x1, x2, · · · , xn|| is invariant under permutation;

3. ||αx1, x2, · · · , xn|| = |α| ||x1, x2, · · · , xn|| for any α ∈ R, and

4. ||x+ x′, x2, · · · , xn|| ≤ ||x, x2, · · · , xn||+ ||x′, x2, · · · , xn||

is called n-norm on X, and the pair (X, ||·, · · · , ·||) is called as an n-normed
space over the field R.

Example 1.1. Let X = Rn being equipped with the Euclidean n-norm
||x1, x2, · · · , xn||E = the volume of the n-dimensional parallelopiped spanned
by the vectors x1, x2, · · · , xn which may be given explicitly by the formula

||x1, x2, · · · , xn||E = |det(xij)|,

where xi = (xi1, xi2, · · · , xin) ∈ Rn for each i = 1, 2, · · · , n.

Let (X, ||·, · · · , ·||) be an n-normed space of dimension d ≥ n ≥ 2 and
{a1, a2, · · · , an} be linearly independent set in X. Then the following func-
tion ||·, · · · , ·||∞ on Xn−1 defined by

||x1, x2, · · · , xn−1||∞ = max{||x1, x2, · · · , xn−1, ai|| : i = 1, 2, · · · , n}

defines an (n− 1)-norm on X with respect to {a1, a2, · · · , an}.
A sequence (xk) in an n-normed space (X, ||·, · · · , ·||) is said to converge to
some L ∈ X if

lim
k→∞

||xk − L, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

A sequence (xk) in an n-normed space (X, ||·, · · · , ·||) is said to be Cauchy
if

lim
k,p→∞

||xk − xp, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to
be complete with respect to the n-norm. Any complete n-normed space is
said to be n-Banach space.
Throughout the paper we use the standard notation w, l∞, c and c0 to de-
note the set of all, bounded, convergent and null sequences of real numbers
respectively. By N and R we denote the set of natural numbers and real
numbers respectively.
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In [27] Orlicz introduced functions called Orlicz functions and constructed
the sequence space lM . Krasnosel’skij and Rutickij further investigated the
Orlicz space in [17]. Lindberg [18] initiated the theory of finding Banach
spaces with symmetric Schauder bases having complementary subspaces iso-
morphic to c0 or lp(1 ≤ p <∞).
Subsequently, Lindenstrauss and Tzafriri ([19], [20], [21]) studied the Orlicz
sequence spaces in more detail with an aim to solve many important and
interesting structural problems in Banach spaces. For more detail about
sequence spaces one may refer to ([26], [30], [31]) and references therein.
An Orlicz function is a function M : [0,∞) → [0,∞) which is continu-
ous, non decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and
M(x)→∞ as x→∞. see ([17], [27]).

Example 1.2. Let us consider a function M(x) defined as

M(x) =

{
0, 0 ≤ x < 1;
x− 1, x ≥ 1.

is an Orlicz function as this function is continuous and satisfies all the
properties of an Orlicz function.

Lindenstrauss and Tzafriri [19] used the idea of Orlicz function to define the
following sequence space:

`M =
{
x ∈ ω :

∞∑
k=1

M
( |xk|
ρ

)
<∞, for some ρ > 0

}
which is called as an Orlicz sequence space. The space `M is a Banach space
with the norm

||x|| = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|
ρ

)
≤ 1
}
.

Every Orlicz sequence space `M contains a subspace isomorphic to the classi-
cal sequence space `p(p ≥ 1). The space `p, p ≥ 1 is itself an Orlicz sequence
space for M(x) = xp.
In ([20], [21]), Lindenstrauss and Tzafriri pointed out a possible generaliza-
tion of the space `M to the case when M is an Orlicz function that does not
satisfy the convexity condition. Later, Kalton [14] picked up the problem
and succeeded in finding many interesting features distinguishing these two
theories of sequence spaces. For more details, one can refer to Kamthan and
Gupta [16]. A K−function is an Orlicz function M which is not convex.
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Example 1.3. For each ν ≥ 6+2
√
5

4 , the corresponding function Mν : R →
R, where

Mν(x) =

{
|x|ν(| log |x||+ 1), if x 6= 0;
0, if x = 0.

is a K− function that satisfies the conditions of Orlicz function but for

1 < ν < 6+2
√
5

4 , Mν is not convex on [0, 1].

A K-function M is said to satisfy ∆2−condition if for each α > 0, we have

KM,α = sup
0<x<∞

M(αx)

M(x)
<∞.

The notion of difference sequence spaces was introduced by Kızmaz [15],
who studied the difference sequence spaces l∞(∆), c(∆) and c0(∆). The
notion was further generalized by Et and Çolak [7] by introducing the spaces
l∞(∆m), c(∆m) and c0(∆

m). Another type of generalization of the difference
sequence spaces is due to Tripathy and Esi [33], who studied the spaces
l∞(∆v), c(∆v) and c0(∆v).
Let m, v be non-negative integers, then for Z a given sequence space Dutta
[3] introduced

Z(∆m
(v)) = {x = (xk) ∈ w : (∆m

(v)xk) ∈ Z},

where ∆m
(v)xk = (∆m

(v)xk) = (∆m−1
(v) xk −∆m−1

(v) xk−v) and ∆0
(v)xk = (xk) for

all k ∈ N, which is equivalent to the following binomial representation

∆m
(v)xk =

m∑
s=0

(−1)s
(
m
s

)
xk−vs.

Taking v = 1, we get the spaces which were introduced and studied by Et
and Çolak [7]. Taking m = v = 1, we get the spaces which were studied by
Kızmaz [15].
We take here xk−vs = 0 whenever k − vs ≤ 0.
Recently, several authors combined the concepts of difference sequences and
Orlicz functions to define new classes of sequences and investigated different
relevant algebraic and topological properties (see for instance [2], [4], [5],
[23]). Now we recall some basic definitions and results which will be useful
for our paper. In this paper we consider only real vector spaces.
A vector space X equipped with a topology τ is called a topological vector
space (TVS) if the operations (x, y) 7→ x+y from X×X → X and (α, x) 7→
αx from R×X → X are continuous, where X ×X and R×X are equipped
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with their usual product topologies and R with the usual metric topology.
A topology τ on X such that (X, τ) becomes a TVS is referred to as a linear
or vector topology on X. For more information about TVS see [32]. Recall
that a subset U of a vector space X is absorbing if for each x ∈ X there is
λ > 0 such that x ∈ αU for all α ∈ R with |α| > λ and U is called balanced
if αU ⊂ U for each α with |α| ≤ 1.

Lemma 1.1. [32] A vector space X equipped with a topology τ is a TVS if
and only if there exists a local base β at the zero element 0 of X consisting
of subsets of X such that
(a) Each U in β is absorbing and balanced;
(b) For each U ∈ β there is a V ∈ β with V + V ⊂ U.

A TVS (X, τ) with τ ≡ τq, the topology generated by a norm q on X
is called an F ∗−space, and if in addition (X, τq) is complete, X is called an
F−space.

Example 1.4. The space LP ([0, 1]) with P < 1 is not a locally convex. It
is a F− space.

A sequence space X with a linear topology is called a K−space provided
each of the maps πi : X → R, πi(x) = xi is continuous, i ≥ 1. It is known
that a sequence space X equipped with a linear topology is a K−space if
and only if the identity map I : X → w is continuous, where w is endowed
with the topology of pointwise convergence.
A K−space X is called a Fréchet K−space provided X is an F−space. For
every absorbing and balanced set U of a vector spaceX, the function p ≡ pU :
X → R+ defined by pU (x) = inf{α : α > 0, x ∈ αU} is called a Minkowski
functional or the gauge associated with U. The function pU associated with
an absorbing and a balanced set U is also called a pseudonorm on X.

Lemma 1.2. Every pseudonorm function p on X gives rise to a unique
linear topology τp on X. Conversely, to every linear topology τ on X there
corresponds a pseudonorm function p on X such that τ is equivalent to τp.

2 Spaces of single n−normed difference sequences

In this section we define the space lM(∆m
(v), p, u, ‖·, · · · , ·‖) and scrutinize its

structural properties.



10 K. Raj, S. Jamwal

Let M = (Mk) be a sequence of K−functions, p = (pk) be a bounded se-
quence of positive real numbers, u = (uk) be a sequence of positive real num-
bers and m, v be a non-negative integers. By w(X − n) denotes X−valued
sequence spaces. Then we introduce the following difference sequence spaces:

lM(∆m
(v), p, u, ‖·, · · · , ·‖) =

{
x ∈ w(X−n) :

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

ρ
, z1, · · · , zn−1

∥∥)pk <∞, for some ρ > 0

and z1, · · · , zn−1 ∈ X
}
.

By taking m = 0 and Mk = M for all k ≥ 1, we get the eminent space [14].
Again if p = (pk) = 1, u = (uk) = 1 and n−normed space is replaced by
normed space then we get renowned space defined by Dutta and Kočinac
[6].

Theorem 2.1. Let M = (Mk) be a sequence of K−functions, p = (pk) be a
bounded sequence of positive real numbers, u = (uk) be a sequence of positive
real numbers. Then the space lM(∆m

(v), p, u, ‖·, · · · , ·‖) is a linear space.

Proof. Let x = (xk) and y = (yk) be an arbitrary sequence in
lM(∆m

(v), p, u, ‖·, · · · , ·‖). Then for some ρ1, ρ2 > 0, we have

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

ρ1
, z1, · · · , zn−1

∥∥)pk <∞
and

∞∑
k=1

Mk

(∥∥uk∆m
(v)yk

ρ2
, z1, · · · , zn−1

∥∥)pk <∞.
Let ρ = 2 max{ρ1, ρ2}. One can suppose that there is a partition of N into
two disjoint sets N1 and N2, at least one of which is infinite, such that
‖uk∆m

(v)xk‖ ≤ ‖uk∆
m
(v)yk‖ for all k ∈ N1 and ‖uk∆m

(v)xk‖ ≤ ‖uk∆
m
(v)yk‖ for

all k ∈ N2. Since the operator ∆m
(v) is linear and each Mk is non-decreasing,
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we have

∑
k∈N1

Mk

(∥∥uk∆m
(v)(xk + yk)

ρ
, z1, · · · , zn−1

∥∥)pk
≤
∑
k∈N1

Mk

(∥∥2uk∆
m
(v)yk

ρ
, z1, · · · , zn−1

∥∥)pk
≤
∞∑
k=1

Mk

(∥∥2uk∆
m
(v)yk

ρ
, z1, · · · , zn−1

∥∥)pk

and

∑
k∈N2

Mk

(∥∥uk∆m
(v)(xk + yk)

ρ
, z1, · · · , zn−1

∥∥)pk
≤
∑
k∈N2

Mk

(∥∥2uk∆
m
(v)xk

ρ
, z1, · · · , zn−1

∥∥)pk
≤
∞∑
k=1

Mk

(∥∥2uk∆
m
(v)xk

ρ
, z1, · · · , zn−1

∥∥)pk .
Therefore, we have

∞∑
k=1

Mk

(∥∥uk∆m
(v)(xk + yk)

ρ
, z1, · · · , zn−1

∥∥)pk
≤
∞∑
k=1

Mk

(∥∥2uk∆
m
(v)xk

ρ
, z1, · · · , zn−1

∥∥)pk
+

∞∑
k=1

Mk

(∥∥2uk∆
m
(v)yk

ρ
, z1, · · · , zn−1

∥∥)pk
<∞

which gives x + y ∈ lM(∆m
(v), p, u, ‖·, · · · , ·‖). Next, for any scalar α we can

find j ∈ N so that |α|
2j
< 1

ρ1
. Since Mk, k ∈ N are non-decreasing functions,
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we have

∞∑
k=1

Mk

(
|α|
∥∥uk∆m

(v)(αxk)

2j
, z1, · · · , zn−1

∥∥)pk
=
∞∑
k=1

Mk

(
|α|
∥∥uk∆m

(v)xk

2j
, z1, · · · , zn−1

∥∥)pk
≤
∞∑
k=1

Mk

(
|α|
∥∥uk∆m

(v)yk

ρ1
, z1, · · · , zn−1

∥∥)pk
<∞

which means that αx ∈ lM(∆m
(v), p, u, ‖·, · · · , ·‖). This completes the proof.

Theorem 2.2. lM(∆i
(v), p, u, ‖·, · · · , ·‖) ⊂ l

M(∆m
(v), p, u, ‖·, · · · , ·‖),

i = 1, 2, .....,m− 1.

Proof. The proof is easy so we omit it.

3 Some Topological Properties of Space
lM(∆m

(v), p, u, ‖·, · · · , ·‖)

In this section we intend to define a linear topology on lM(∆m
(v), p, u, ‖·, · · · , ·‖).

Before defining it we prove some other results which are useful to introduce
this topology.

BM(ε)(p, u, ‖·, · · · , ·‖) =

{
x ∈ w(X−n) :

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

ρ
, z1, · · · , zn−1

∥∥)pk <∞, for some ρ > 0

and z1, · · · , zn−1 ∈ X
}
.

and

βM(p, u, ‖·, · · · , ·‖) = {ρBM(ε)(p, u, ‖·, · · · , ·‖) : ρ, ε > 0}.

Clearly each element in βM(p, u, ‖·, · · · , ·‖) contains the zero sequence 0−
the origin of lM(∆m

(v), p, u, ‖·, · · · , ·‖).
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Theorem 3.1. The family βM(p, u, ‖·, · · · , ·‖) satisfies the following
properties: (i) If x ∈ lM(∆m

(v), p, u, ‖·, · · · , ·‖), then for each member

ρBM(ε)(p, u, ‖·, · · · , ·‖) of βM(p, u, ‖·, · · · , ·‖) we have
x ∈ λ0ρBM(ε)(p, u, ‖·, · · · , ·‖), for some λ0 > 0 and thus for all λ ∈ R with
λ ≥ λ0.
(ii) For each element U = ρBM(ε)(p, u, ‖·, · · · , ·‖) in βM(p, u, ‖·, · · · , ·‖) and
each λ ∈ (0, 1], λU ⊂ U,
(iii) ρ

2BM

(
ε
2

)
(p, u, ‖·, · · · , ·‖) + ρ

2BM

(
ε
2

)
(p, u, ‖·, · · · , ·‖)

⊂ ρBM(ε)(p, u, ‖·, · · · , ·‖),
(iv) ∩{U : U ∈ βM(p, u, ‖·, · · · , ·‖)} = {0}.

Proof. (i) Let x ∈ lM(∆m
(v), p, u, ‖·, · · · , ·‖). Then we can find γ > 0 with

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

γρ
, z1, · · · , zn−1

∥∥)pk <∞.
Hence, there is j ∈ N such that

∞∑
k=j+1

Mk

(∥∥uk∆m
(v)xk

γρ
, z1, · · · , zn−1

∥∥)pk < ε

2
.

There are also positive numbers γ1, γ2, ...., γj such that

M1

(∥∥uk∆m
(v)x1

γ1γρ
, z1, · · · , zn−1

∥∥)pk < ε

22
,

M2

(∥∥uk∆m
(v)x2

γ2γρ
, z1, · · · , zn−1

∥∥)pk < ε

23
,

.................................................................

Mj

(∥∥uk∆m
(v)xj

γjγρ
, z1, · · · , zn−1

∥∥)pk < ε

2j+1
.

If λ0 = max{γ, γ1γ, ...., γjγ}, then for all λ with λ ≥ λ0 we have

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

λρ
, z1, · · · , zn−1

∥∥)pk ≤ j∑
k=1

Mk

(∥∥uk∆m
(v)xk

γkγρ
, z1, · · · , zn−1

∥∥)pk
+

∞∑
k=j+1

Mk

(∥∥uk∆m
(v)xk

γρ
, z1, · · · , zn−1

∥∥)pk
<
ε

2
+
ε

2
= ε.
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Hence x ∈ λρBM(ε)(p, u, ‖·, · · · , ·‖).
(ii) Let λ ∈ (0, 1] and (xk) ∈ λU, i.e. let

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

λρ
, z1, · · · , zn−1

∥∥)pk < ε

be satisfied. Then because of |λ|ρ ≤ ρ we have

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

ρ
, z1, · · · , zn−1

∥∥)pk
≤
∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

λρ
, z1, · · · , zn−1

∥∥)pk < ε,

i.e. (xk) ∈ ρBM(ε)(p, u, ‖·, · · · , ·‖) = U.
(iii) Let x, y ∈ ρ

2BM

(
ε
2

)
(p, u, ‖·, · · · , ·‖). Then

∞∑
k=1

Mk

(∥∥uk∆m
(v)(xk + yk)

ρ
, z1, · · · , zn−1

∥∥)pk
≤
∞∑
k=1

Mk

(∥∥2uk∆
m
(v)xk

ρ
, z1, · · · , zn−1

∥∥)pk
≤
∞∑
k=1

Mk

(∥∥2uk∆
m
(v)yk

ρ
, z1, · · · , zn−1

∥∥)pk
≤ ε

2
+
ε

2
= ε.

Therefore, x+ y ∈ ρBM(ε)(p, u, ‖·, · · · , ·‖).
(iv) It is evident.

From the preceding Theorems and Lemma 1.2 one obtains the following

Corollary 3.1. (lM(∆m
(v), p, u, ‖·, · · · , ·‖), τM) is a Hausdroff topological vec-

tor space, where the linear topology τM on lM(∆m
(v), p, u, ‖·, · · · , ·‖) is gener-

ated by βM(p, u, ‖·, · · · , ·‖), for simplicity we shall denote τM(p, u, ‖·, · · · , ·‖)
by τM.

In fact we have

Theorem 3.2. (lM(∆m
(v), p, u, ‖·, · · · , ·‖), τM) is a metrizable topological vec-

tor space.
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Proof. Consider the family

β′ = {ρB(ε)(p, u, ‖·, · · · , ·‖) : ρ, ε > 0 and ρ, ε are rational numbers }
⊂ βM(p, u, ‖·, · · · , ·‖).

This family of neighbourhoods of 0 is countable and generates the same
topology τM on lM(∆m

(v), p, u, ‖·, · · · , ·‖). Therefore, τM is a metrizable
topology. From the K−character of τM, monotonicity and continuity of K-
functions Mk, k ∈ N, it follows (lM(∆m

(v), p, u, ‖·, · · · , ·‖), τM) is a K−space
and hence complete.

Now we have the following propositions.

Proposition 3.1. (lM(∆m
(v), p, u, ‖·, · · · , ·‖), τM) is a Fréchet K− space.

By imposing the ∆2− condition, on each K− functions Mk, we show
that the Fréchet space lM(∆m

(v), p, u, ‖·, · · · , ·‖) becomes an AK−space (see

[23]). In this connection we define the following space:
hM(∆m

(v), p, u, ‖·, · · · , ·‖) =

{
x ∈ w(X−n) :

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

ρ
, z1, · · · , zn−1

∥∥)pk <∞, for all ρ > 0
}
.

Clearly, hM(∆m
(v), p, u, ‖·, · · · , ·‖) is a subspace of lM(∆m

(v), p, u, ‖·, · · · , ·‖).

Proposition 3.2. hM(∆m
(v), p, u, ‖·, · · · , ·‖) is an AK−space

Proof. Let x = (xk) ∈ hM(∆m
(v), p, u, ‖·, · · · , ·‖) and ε > 0 be arbitrary

chosen. Then

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

ρ
, z1, · · · , zn−1

∥∥)pk <∞, for every ρ > 0.

Hence, we can find an integer s0 such that

∞∑
k=s+1

Mk

(∥∥uk∆m
(v)xk

ρ
, z1, · · · , zn−1

∥∥)pk ≤ ε, for all s ≥ s0.

It implies that x[s] − x ∈ ρBM(ε)(p, u, ‖·, · · · , ·‖). Here x[s] denotes the s-

section of x that is, x[s] =

∞∑
k=1

xke
(k), e

(k)
k = 1, e

(k)
t = 0 for t 6= k. Since ρ

and ε > 0 was arbitrary, it follows that x(s) → x in the topology τM.
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Proposition 3.3. If each K−function of the sequence M = (Mk) satisfies
the ∆2−condition, then hM(∆m

(v), p, u, ‖·, · · · , ·‖) = lM(∆m
(v), p, u, ‖·, · · · , ·‖).

Proof. Let x = (xk) ∈ lM(∆m
(v), p, u, ‖·, · · · , ·‖). Then

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

ρ
, z1, · · · , zn−1

∥∥)pk <∞,
for some ρ > 0. Let us choose an arbitrary r > 0. Then

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

r
, z1, · · · , zn−1

∥∥)pk
=

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

ρ
, z1, · · · , zn−1

∥∥)pkMk(
ρyk
r )

Mk(yk)
,

where

yk =
∥∥∥uk∆m

(v)xk

ρ
, z1, · · · , zn−1

∥∥∥.
Since each Mk satisfies the ∆2−condition we have

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

r
, z1, · · · , zn−1

∥∥)pk
≤
∞∑
k=1

KMk
,
ρ

r
Mk

(∥∥uk∆m
(v)xk

ρ
, z1, · · · , zn−1

∥∥)pk .
Thus, x ∈ hM(∆m

(v), p, u, ‖·, · · · , ·‖) and so

hM(∆m
(v), p, u, ‖·, · · · , ·‖) = lM(∆m

(v), p, u, ‖·, · · · , ·‖).

Combining Propositions 3.4, 3.5 and 3.6 we get the most predictable result
in the following proposition.

Proposition 3.4. If each K−function of the sequence M = (Mk) satisfies
the ∆2−condition, then lM(∆m

(v), p, u, ‖·, · · · , ·‖) is an AK−space.

Definition of pseudonorm and Lemma 1.3 support us to talk about τM in
terms of pseudonorms which generate this topology. For each ρ and ε > 0,
let us define

Pρ,ε(x)(p, u, ‖·, · · · , ·‖) = inf{α > 0,x ∈ αρBM(ε)(p, u, ‖·, · · · , ·‖)}.
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Clearly, Pρ,ε(λx)(p, u, ‖·, · · · , ·‖) = |λ|Pρ,ε(x)(p, u, ‖·, · · · , ·‖) and Pρ,ε(x +
y)(p, u, ‖·, · · · , ·‖) ≤ P ρ

2
, ε
2
(x)(p, u, ‖·, · · · , ·‖) + P ρ

2
, ε
2
(y)(p, u, ‖·, · · · , ·‖) for

all x,y ∈ lM(∆m
(v), p, u, ‖·, · · · , ·‖) and λ ∈ R.

Hence, we have the following proposition.

Proposition 3.5. The family {Pρ,ε(λx)(p, u, ‖·, · · · , ·‖) : ρ, ε > 0} of pseu-
donorms on lM(∆m

(v), p, u, ‖·, · · · , ·‖) generates the topology τM.

Next suppose each K−function of the sequence M = (Mk) satisfies the
∆2−condition and let us define the function Pε(p, u, ‖·, · · · , ·‖) on
lM(∆m

(v), p, u, ‖·, · · · , ·‖) as follows

Pε(p, u, ‖·, · · · , ·‖) = inf
{
α > 0 :

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

α
, z1, · · · , zn−1

∥∥)pk ≤ ε,}.
Then Pε(p, u, ‖·, · · · , ·‖) is a pseudonorm on lM(∆m

(v), p, u, ‖·, · · · , ·‖).
For the next results we shall assume that each K−function of the sequence
M = (Mk) satisfies the ∆2−condition.

Proposition 3.6. The family {Pρ,ε(λx)(p, u, ‖·, · · · , ·‖) : ρ, ε > 0} of pseu-
donorms on lM(∆m

(v), p, u, ‖·, · · · , ·‖) generates the topology σM(p, u, ‖·, · · · , ·‖)
on lM(∆m

(v), p, u, ‖·, · · · , ·‖).

Proposition 3.7. If x ∈ lM(∆m
(v), p, u, ‖·, · · · , ·‖), then

Pρ,ε(x)(p, u, ‖·, · · · , ·‖) =
1

ρ
Pε(x)(p, u, ‖·, · · · , ·‖)

for each ρ > 0 and ε > 0.

Proof. Let x = (xk) ∈ lM(∆m
(v), p, u, ‖·, · · · , ·‖). Then

Pρ,ε(x)(p, u, ‖·, · · · , ·‖) = inf{α > 0,x ∈ αρBM(ε)(p, u, ‖·, · · · , ·‖)}

=
1

ρ
inf
{
αρ > 0 :

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

αρ
, z1, · · · , zn−1

∥∥)pk ≤ ε,}
=

1

ρ
inf
{
r > 0 :

∞∑
k=1

Mk

(∥∥uk∆m
(v)xk

r
, z1, · · · , zn−1

∥∥)pk ≤ ε,}
=

1

ρ
Pε(x)(p, u, ‖·, · · · , ·‖).

Thus, Pρ,ε(x)(p, u, ‖·, · · · , ·‖) = 1
ρPε(x)(p, u, ‖·, · · · , ·‖) for each

x ∈ lM(∆m
(v), p, u, ‖·, · · · , ·‖).
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Hence, we have the following proposition.

Proposition 3.8. The topologies τM and σM(p, u, ‖·, · · · , ·‖) are equivalent.

4 Some Spaces of double sequences

Some initial results on double sequences can be found in ([1], [12], [13], [29]).
For other useful results on double sequences, one may refer to Moricz and
Rhoades [25].
A double real sequence x : N×N→ R is usually denoted by x = (xmv) and
expressed as an infinite matrix. In 1900, Pringsheim [28] introduced the con-
cept of convergence of real double sequences: a double sequence x = (xmv)
converges to L ∈ R, denoted by P − limx = L or P − limxmv = L, if for
every ε > 0 there is N0 ∈ N such that |xmv − L| < ε for all m, v > N0.
The limit L is called the Pringsheim limit of x. The notion of regular con-
vergence of double sequence was introduced by Hardy [12] as follows. A
double sequence x = (xmv) is said to converge regularly if it converges in
the Pringsheim’s sense and the following limits exist:
lim
m→∞

xmv for each n ∈ N and lim
v→∞

xmv for each v ∈ N.

Example 4.1. Consider a double sequence space x = (xmv) and is defined
as

x = (xmv) =


m, if v = 3;
v, if m = 5;
8, otherwise.

Then (xmv)→ 8 in Pringsheim’s sense (because P − limxmv = 8 if for every
ε > 0 there is N0 ∈ N such that |xmv − 8| < ε for all m, v > N0. The limit
8 is called the Pringsheim limit of x = (xmv)). But not bounded as well as
not regularly convergent.

Example 4.2. Let x = (xmv) = 1 for all m, v ∈ N. Then (xmv) is convergent
in Pringsheim’s sense, bounded and regularly convergent.

In [6] Dutta and Koćinac introduced the notion of OK−space of double se-
quences 2l

M. Also present an idea how to use the difference operator to dou-
ble sequences in order to introduce the spaces of double difference sequences
extended by K-functions and give an alternative definition of the spaces
Z(∆s

(r)) of difference sequences. In the end they define the OK−spaces of

double difference sequences 2l
M(∆s

(r)). The first order difference operator ∆
can be expressed as an infinite triangular matrix
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∆ =


1 −1 0 0 0 ...
0 1 −1 0 0 ...
0 0 1 −1 0 ...
.. .. .. .. .. ...
.. .. .. .. .. ...

 .

Let ∆(1) denote the additive inverse of ∆, i.e. ∆+∆(1) = 0 , the zero infinite
matrix.
Define inductively ∆2 = ∆.∆, ∆2

(1) = −∆2; ...; ∆n = ∆.∆n−1, ∆n
(1) = −∆n.

Next, ∆2 can be considered as

∆2 =


1 0 −1 0 0 ...
0 1 0 −1 0 ...
0 0 1 0 −1 ...
.. .. .. .. .. ...
.. .. .. .. .. ...

 ,

and ∆(2) as the additive inverse of ∆2. Similarly, we can have ∆(r) and ∆r

for each r ≥ 2. Hence we can define ∆s
(r) as

∆s
(r) = ∆(r).∆

s−1
(r) .

Now we can give another definition of the space Z(∆s
(r), p, u, ‖·, · · · , ·‖) of

difference sequences as follows:

Z(∆s
(r), p, u, ‖·, · · · , ·‖) = {(xk) : (AiX) ∈ Z(p, u, ‖·, · · · , ·‖)}

where
X = [x1x2...xn...]

τ ,∆s
(r) = A = (aik)

and

AiX =

∞∑
k=1

aikxk, for each i ≥ 1.

This approach is very useful to construct new difference double sequences.
Let a double sequence a = (amv) be expressed as an infinite matrix

(amv) =


a11 a12 a13 ... a1n ...
a21 a22 a23 ... a2n ...
a31 a32 a33 ... a3n ...
.. .. .. .. .. ...
.. .. .. .. .. ...

 .
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Now we define the set 2Z(∆, p, u, ‖·, · · · , ·‖) of double difference sequences
as follows:

2Z(∆, p, u, ‖·, · · · , ·‖) = {a = (amv) : (∆a) ∈ 2Z(p, u, ‖·, · · · , ·‖)}.

∆a =


1 −1 0 0 0 ...
0 1 −1 0 0 ...
0 0 1 −1 0 ...
.. .. .. .. .. ...
.. .. .. .. .. ...

 ;


a11 a12 a13 ... a1n ...
a21 a22 a23 ... a2n ...
a31 a32 a33 ... a3n ...
.. .. .. .. .. ...
.. .. .. .. .. ...



=


a11 − a21 a12 − a22 ... a1n − a2n ...
a21 − a31 a22 − a32 ... a2n − a3n ...
a31 − a41 a32 − a42 ... a3n − a4n ...

.. .. .. .. ...

.. .. .. .. ...

 .

Now we define

2Z(∆s
(r), p, u, ‖·, · · · , ·‖) = {a = (amv) : Ba ∈ 2Z(p, u, ‖·, · · · , ·‖)}

= {a = (amv) : (ckv) ∈ 2Z(p, u, ‖·, · · · , ·‖)},
where

B = (bvk) = ∆s
(r) and Ba = C = (ckv)

with

ckv =

∞∑
k=1

bkmamv, for each k, v ∈ N.

For a K−function M, in view of the above interpretations, we define the
OK− spaces of double difference sequences as follows:

2l
M(∆s

(r), p, u, ‖·, · · · , ·‖)

=
{
a = (amv) ∈ 2w(X − n) : (∆s

(r)amv) ∈ 2l
M(p, u, ‖·, · · · , ·‖)

}
=

{
(amv) ∈ 2w(X − n) :

∞∑
m=1

∞∑
v=1

Mk

(∥∥uk∆s
(r)amv

ρ
, z1, · · · , zn−1

∥∥)pk <∞,
for some ρ > 0}

=

{
(ckv) ∈ 2w(X − n) :

∞∑
k=1

∞∑
v=1

Mk

(∥∥ukckv
ρ

, z1, · · · , zn−1
∥∥)pk <∞,

for some ρ > 0} .
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One can investigate topologies on 2l
M(∆s

(r), p, u, ‖·, · · · , ·‖) and hence prove

that the spaces 2l
M(p, u, ‖·, · · · , ·‖) and 2l

M(∆s
(r), p, u, ‖·, · · · , ·‖) are topo-

logically equivalent, for all r, s ∈ N.
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