Ann. Acad. Rom. Sci.
Ser. Math. Appl.
ISSN 2066-6594 Vol. 10, No. 2/2018

ON SOME PERTURBATION BOUNDS
FOR A MATRIX EQUATION FROM
INTERPOLATION PROBLEMS ¥

Desislava 1. Borisova' Vejdi I. Hasanov®

Abstract

Some existing perturbation bounds for a unique positive definite
solution of a nonlinear matrix equation connected to the interpolation
theory are analyzed and compared. We examine the behavior of the
perturbation bounds, considered in five sources, through experiments
with five numerical examples.
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1 Introduction

Throughout this paper, CP*? denotes the set of p X ¢ complex matrices, and
H™ the set of n x n Hermitian matrices. A* stands conjugate transpose of
a matrix A, A > 0 (A > 0) means that A is a Hermitian positive definite
(semidefinite) matrix. If A— B > 0 (or A — B > 0) we write A > B (or
A > B). I (or I) is the identity matrix of order n. The symbols |- |, || - ||
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and p(-) denote the spectral norm, the Frobenius norm, and the spectral
radius, respectively. For the matrices A = (a;5) and B, A® B = (a;; B) is a
Kronecker product. Finally, for a matrix Z, we denote with 7 the m x m
block diagonal matrix with Z on its diagonal, i.e. Z = I, ®Z.

Consider the nonlinear matrix equation

X -AX1a=0, (1)

where A € C™*" @ € H", and Q > 0.
Eq. (1) is a special case of the equation

X-A(X-0)'A=0, (2)

where C' € H™" and C > 0. Eq. (2) is connected with certain interpolation
problems [1, 2, Chapter 7]. Ran and Reurings [1] have proved that, under
the condition @ > C, Eq. (2) has a unique positive definite solution X,
satisfying )/(: > (. Hence, Eq. (1) has a unique positive definite solution.
Moreover, Liu and Zhang [3, Lemma 2.1] have proved that, under the con-
dition @ > C, Eq. (2) is equivalent to an equation in the form of Eq. (1)
and used the Newton’s method for solving of Eq. (1).

In this paper, the unique positive definite solution of a matrix equation
we will call mazimal solution.

Let

Aq
A= : ecmmn A, eC™ i=1,2,...,m.
Am

Then Eq. (1) can be written as
m
X-=) A X'4=0Q. (3)
i=1

Duan et al. [4] have investigated Eq. (3) with @ = I, using the Thomp-
son metric they proved that the matrix equation always has a unique positive
definite (maximal) solution. Moreover, in [4] on the matrix differentiation
have been given a perturbation bound for the maximal solution. Sun [5]
have obtained perturbation bounds, condition numbers for the maximal so-
lution of Eq. (2), and residual bounds for an approximate solution to the
maximal solution. In [6] two perturbation bounds and an explicit expres-
sion of the condition number for the maximal solution of Eq. (3) have been
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obtained. Residual bound for an approximate solution, calculated by an
iterative algorithm have been derived in [7]. In [8, 9] some modifications of
a perturbation bound from [6] are derived.

Eq. (1) (or (3)) for m = 1 arises in the analysis of stationary Gaussian
reciprocal processes over a finite interval [10, 11]. It has been investigated
for the existence a positive definite solution in [10, 12, 13] and it has been
executed the perturbation analysis in [14, 15, 16, 17].

In addition, there are many contributions in the literature to the solvabil-
ity, numerical solutions, and perturbation analysis for the matrix equations
X - Zz JATXO% A = Q (18, 19, 20, 21], X — S0, AXF(X)A; = Q [22],
Ao + ZZ 1OiATXPIA; =023, 24], X £ A* X "A = Q [25].

Motivated by investigation of Popchev and Angelova in [17], in this paper
we analyze and compare the effectiveness and the accuracy of the existing
perturbation bounds for the maximal solution of Eq. (1).

2 Perturbation bounds

Consider the perturbed equation

XX A= Q, (4)

where A and @ (Q > 0) are small perturbations of A and @ in (1), respec-
tively. We note that

Aq
A~ _ : c Cmnxn
Ap,
where A;, i = 1,2,...,m are small perturbations of 4; in (3), respectively.

Then, we write Eq. (4) as follows
m ~ ~ ~
X =) AXTA= (5)

Let X4 and X, be the maximal solutions of Egs. (1) and (4), respec-
tively.

Denote AX, = X, — X, AQ=Q—-Q,AA=A—A, and AA, = A;—A,.

We consider the perturbation bounds for equations (1) (or (3)) and (2)
proposed by Sun [2], Konstantinov et al. [23], Yin and Fang [6], and Hasanov
8, 9.
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We use some general notations. Let

=T+ (X7'4)T LA (6)
=1
p q
T
Zzep)ekq ®e(q) gp) , (7)
7j=1 k=1

(»)

where €; denotes the jth column of I,.

2.1 The bound of Sun [2]

Sun [2] has obtained a perturbation bound (see [2, Theorem 2.1]) for the
maximal solution of Eq. (2). We formulate Sun’s results in case of C' = 0.
Let

LI, @ (XTTA)) = Uy + i€, LY (X7 A)T @ L)y = Uy + i,

where Uy, Q1, Us, Qo are real n? x mn? matrices, i = v/—1.
Let

=iz o= (etet e ) ®)
7= 1X5, =HX*1AH B= x4, ©)
e=plAdlr + 1 (1AQI + 11 AANIAA ), (10
= 5= (34 AL (1)

Theorem 1. (Theorem 2.1 from [2] in case of C = 0) Let X be the mazimal
solution to Eq. (1). Definel, p, v, 8, B by (8)-(11). If

Q>0, [>6,
(1—61)2
TU2r+ (I -s)y+ 2T+ (=]

(12)

then the perturbed equation (4) has a unique mazximal solution X+ and

2le

AX <
[AX lF < =61+ lye+ /(L — 01 + Iye)2 — A[r + (I — 61 )7]le

= estsun()g.

(13)
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2.2 The bound of Konstantinov et al. [23]

Konstantinov et al. [23] have obtained local and non-local perturbation
bounds for the matrix equation

k
=1

One particular case of this equation is k = m+ 1, A9 = Q, Api1 = 1,
Om+1=pi=—1,pm1=0;=1,i=1,2,...,m,ie Eq. (1).

Now, we formulate the results from [23] in this particular case.

Let

5= (|1AQ|r. |AA|p, -+, | AAw[lF)", (15)
Wq =L" =Wgqo+iWoi,

Wy = aiL_l(In ® (XTAZ»)*) = Wy,0 +iWa;1,

Wy = oL V(X0 A)T @ L)y = Wao+iWa,

My = < W0+ WAZ-O WAZ-I —Wan ) 7

: Wii+Wan Wao— Wiy

-
wg = ( Wao —War ) ko = [Woll
Q (WQI Wao Q | QH
kAz:HlﬁAz‘L i:1727"'7m7

I'= (F17F27"'7Fm+2) = (WgaMAU'"?MA

m+1)7

where L, II,, , are from (6), (7).
Konstantinov et al. [23] have obtained the local perturbation bounds:

est1(8) = kQllAQIr + Y ka,|AA r,
i=1

esto(8) = ||T|||16]], ests(d) = VIT RS,

est(d) = min{esta(0), ests(9)},

where R is an (m + 1) x (m + 1) real symmetric matrix with non-negative
entries r;; = |T7T,, 4,7 =1,2,...,m+ 1.

We note that, in case of real matrix coefficients in Eq. (1), the above
formulas are more simple (see [23]).
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Let
ag(8) = est(8) + LI X 1| i 1A A%, (16)
ar(8) = LI X2 §(2HA¢H + [[A4i|F) [ A4l F, (17)
az(6) = IILllHXIlHBi(IlAz‘II +[|AAilF)?, (18)
0= {5 from (15) : al(;+ 2\/ao(8)az(d) < 1}. (19)

The following non-local perturbation bound was obtained in [23].

Theorem 2. ([23, Theorem 5.1]) Let § € Q, where 2 is given in (19). Then
the non-local perturbation bound

2&0(5)
1 —a1(6) + /(1 — a1(9))? — 4ao(é)az(6)

is valid for Eq. (1), where a;(0), i = 0,1,2 are determined by (16)-(18).

[AX |F <

=: eStkonppa11  (20)

2.3 The bound of Yin and Fang [6]

Theorem 3. ([6, Theorem 2.1]) Let A, Q and A, Q with Q, Q positive
definite be coefficient matrices for Eqs. (1) and (4), respectively. Denote

b=1—[AIPIXI + IXEHIAQl,
c=[AQI + 2| XTI IAA + I XHIIAAL?,
D =b? —4dc| X1

IfIIANIXTH <1 and

_ 2
(L= llAlXE)
[enl

2|aA] + [AQl < (21)

then the mazimal solutions X, and X the respective matriz equations (1)

and (4) satisfy
b—+D
: eStyinflg. (22)

[AXy] < o =
2] X
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2.4 The bounds of Hasanov [8, 9]

Applying the technique developed in [16], Hasanov have obtained the fol-
lowing result in [8].

Theorem 4. ([8, Theorem 2|) Let A, Q and A, Q with Q, Q positive definite
be coefficient matrices for Eqs. (1) and (4), respectively, P is a positive

definite matriz. Denote oy, = |PX ' AP7Y|, B, = ||[PX ' P||, where X is
the maximal solution of Eq. (1),

by=1—al+ Bp|PTTAQP,

¢ = [|PTTAQPTY| + 20, | P-TAAPTY| 4 B, || PTTAAPTH .

If ap <1 and
2PTiaar | + P agp < L) (23)
p
then D), = b?, —4cpfp > 0 and
IAX, || < |yP||2b” ~VDy =: esthasPi7a - (24)

20p
We note that in [8] for the maximal solution X of Eq. (1) we have

p((X;T ® X7 i AT ® A:) - p(zm:(X_IlAi)T ® (X;lAi)*> <1,
=1 i=1

= [|X .

(o AT e (6 A < |30 A
i=1

=1

In case of HX;lAH < 1, we can apply Theorem 4 with P = [I. In this
case, the estimate estpgspi7, in (24) we denote estpqsri7q- But, in case of

HX;lAH > 1 appears the question "How to choose the matrix P, such that

|PX{'AP~Y|| < 17. In [9] have been proven that H\/XIIA\/XIIH < 1.
Hence, Theorem 4 is applicable with P = /X . In this case the estimate

esthasp17a in (24) we will denote by est, VX 17a- Moreover, in [9] have been
obtained an alternative result to Theorem 4 with P = /X .
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Theorem 5. ([9, Theorem 3]) Let A, @ and A, Q with Q, Q positive definite
be coefficient matrices for Eqs. (1) and (4), respectively. Let

by =1 |/ XTI AYXTH? + I XZHIIAQ)
c1 = [|AQ + 2|/ X1 Ay XY IIAA] + [IX Y AA=?,

where X is the mazimal solution of Eq. (1). If

(=)

2| AAl + [[AQ] < 25
[AA] +[lAQ] < X7 (25)
then Dy = b — 4c1|| X' > 0 and
b1 — /Dy
A, < XY et (26)

In case of HX;IAH > 1, but if |AX'| < 1, then Theorem 4 is applicable
with P = X . In this case, the estimate estpqsp174 in (24) we will denote
by esthasxi7q- Hasanov [9] has obtained following alternative result for this
case.

Theorem 6. ([9, Theorem 4]) Let A, Q and A, Q with Q, Q positive definite
be coefficient matrices for Eqs. (1) and (4), respectively. Let

by =1~ |AXTH? + [IXLIXTHPAQI
c2 = [AQ| + 2| AXTH[|AA + | XTHIAAL%,

where X is the mazimal solution of Eq. (1). If ag <1 and

(- 1AX5 )
21241 + 2@ < R (27)
XX
then Dy = b3 — 4deo|| X4 [||| X112 > 0 and
by — /D
AKX < IX4 15— = esthasxin (28)

We note that, the maximal solution X of Eq. (1) satisfies X1 > Q.

Hence, ||vQ@X'v/Q| < 1. Thus, if H\/\/Q—lA\/Q—lH < 1, then
IVexy'ave| < [VexT'Valllve—tave | <1

Therefore, in case of H VO TAy/Q! H < 1, Theorem 4 is applicable with
P = /Q. In this case, the estimate estpqsp17q in (24) we denote est . /517,
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3 Numerical examples

We consider some numerical examples and compare the perturbation bounds.
Denote the ratio of the perturbation bounds to the estimated value as fol-
lows:

€5t sun03 eStkonppall . 68tyinf13
sun03 = ———, konppall = ——~——, infl3 = —ynils
[AX |[F IAX ||F yinf [AXL]
t est
+ +
t est
hCLSXl'?a = eT,gaij(Xlanv haS\/al’Ya = HhA#\/Q’lfa’
+ +
est €SthasX17b
h X17b = “*"hasVX17b hasX17b = Z>thasX17b
VI =R e [AX.]

where esthasii7as €8ty,,4 /X177 €SthasX17a; €Stpes /017, A€ denoted the per-
turbation bound estp,spi7, in (24) for P = I, P = /X4, P = X4, and

P = ./Q, respectively.

Example 1. ([6, Example 4.1]) Consider Eq. (1) with coefficient matrices

—0.4326 —1.1465

4 | —1.6665  1.1909 Q= ( 0.1376  0.0656 >
0.1253  1.1892 |’ 0.0656 0.5616
0.2877 —0.0376

and perturbations on the matrices A and @

(407
—10~J
Csemw (1),

10
AA=10"7

S 0N
— s O

respectively.
The approximation of the maximal solution

Y.~ 1.1572575  0.01971555
7\ 0.01971555  3.3569583

have been computed after 200 iteration by formula

—

Xip1 = Q+A'X; 4, Xo=0Q. (29)
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The solution X'+ to the perturbed equation (4) have been computed itera-
tively by formula (29), also, as X+ ~ Xo00.

In Table 1 the perturbation bounds with different values of j are given.
The cases when the conditions of existence of a bound are violated are
denoted by an asterisk. In case of j =5, j = 6, and j = 7 the perturbation
bounds estsun03 and estronppe11 are sharper, but in case of j = 4.4 are not
applicable.

Table 1: Numerical results of Example 1:
j j=44 j=5 j=6 j=7
[AX,]|  0.0012 3.0193e —04 3.0159¢ — 05 2.9752¢ — 06
|AX][F  0.0013 3.2960e — 04 3.2929¢ — 05 3.2550e — 06

sun03 * 10.2369 9.5045 9.5514
konppall * 10.5080 9.4466 9.4704
yinfl3 * * * *
hasI17a * * * *
hasq@Q17a * * * *
hasqX17a  35.3452 31.9281 31.1718 31.5215
hasX17a * * * *
hasqX17b 45.6326 39.8713 38.6852 39.0970
hasX17b * * * *

Example 2. ([6, Example 4.2]) Consider Eq. (1) with m = 2, n = 4 and
matrices A and Q as follows:

A=<A1 ) Q= X, — A*XTIA,

Ao
where
1 2 3 4 1 0 0 1
1 1 225 12 2 23 -1 1 0 1
Alzi 9 A2:7
wol|l 2 9 7 3 45 -1 -1 1 1
12 1 2 19 -1 -1 -1 1
and
25 1 1 1
1 25 1 1
Xy = 1 1 25 1
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Consider perturbation on the matrices A and Q:

—25 ( C1/lICA]| ) o reij
AA=10"% ., AQi=X, - AXT'A-Q,
(02/||02|| @=Xy -4 X 4@

with X, = X, +10"%(I — E), E being the 4 x 4 matrix with all entries
equal to 1, C1, Cy random matrices generated by MATLAB function randn.

In Table 2 the perturbation estimates for different values of j are given.
Among the bounds considered in this example the bound esty,s7174, followed
by estronppai1 and estguno3, gives the sharpest estimates.

Table 2: Numerical results of Example 2:
J Jj=2 Jj=3 j=4 J=95
|AX|| 3.0000e — 04 3.0000e — 06 3.0000e — 08 3.0000e — 10
IAX]| 7 3.4641e — 04 3.4641e — 06 3.4641e — 08 3.4641e — 10

sun03 1.3939 1.4355 1.3715 1.3958
konppall 1.3736 1.4265 1.3674 1.3784
yinfl3 1.4950 1.5490 1.4506 1.4890
hasIl7a 1.3609 1.4201 1.3288 1.3654
hasqQ17a 2.9440 2.5763 2.6747 2.6290
hasqX17a 2.9027 2.5441 2.6388 2.6109
hasX17a 10.9163 9.4421 9.5722 9.6494
hasqX17b 4.9918 5.2088 4.8738 5.0082
hasX17b 18.6834 19.4593 18.2115 18.7087

In following two examples we consider Eq. (1) with complex matrices A.

Example 3. Consider Eq. (1) with m = 3, n =5 and matrices A and Q as
follows:
Ay /\
A= 4 |, Q:=X;-AX"A,
As

where A1 = 12—‘?140, Ay = 12—‘?A0T, As = %Ang, with i =+/—1, and

1 0 0 0 1 25 1 1 1 1
-1 1 0 0 1 1 25 1 1 1
Ag=1| -1 -1 1 0 11|, Xy= 1 1 25 1 1
-1 -1 -1 1 1 1 1 1 25 1
-1 -1 -1 -1 1 1 1 1 1 25
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Consider perturbation on the matrices A and Q:

L0-2 20i C i o
AA = mer 2(%iC’T . AQ =X, - AXTTA-Q,
cT+cC

with X, = X, +107%(I — E), E being the 5 x 5 matrix with all entries
equal to 1, C' random matrix generated by MATLAB function randn.

In Table 3 the perturbation estimates for different values of j are given.
The most effective bound is the bound estp,sr174, followed by the bounds

65tyinf13a eStkonppall and estsun03.

Table 3: Numerical results of Example 3:
J Jj=2 Jj=3 j=4 J=5
IAX|| 4.0000e — 04 4.0000e — 06 4.0000e — 08 4.0000e — 10
|IAX ]| 7 4.4721e — 04 4.4721e — 06 4.4721e — 08 4.4721e — 10

sun03 3.3011 3.3570 3.2887 3.0113
konppall 3.4066 3.4447 3.3836 3.0894
yinfl3 2.8904 3.1122 3.2372 2.7202
hasI17a 2.4637 2.6985 2.7782 2.3140
hasqQ17a 7.6038 7.6915 9.1061 6.3522
hasqX17a 7.5700 7.6329 9.0323 6.3220
hasX17a 38.7663 40.4155 48.8969 32.6099
hasqgX17b 10.3512 11.3791 11.6895 9.7180
hasX17b 54.2108 58.2862 60.6146 50.9264

Example 4. Consider Eq. (1) with m =4, n =9 and matrices A and Q as
follows:

Ay
A= | A =X, —A*X A
= AS ) Q = + = + ;
Ay
where
1 . 1 . 1 .
A1 = E(Kn—i-lpn), AQZE(SKH_‘_QIPTL); A3: 5(4Kn+3lpn),
1
Ay = —(5K, +3iP,), X;=nl+ P,,
n
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with K,, and P, are Kahan’s and Poisson’s matrices, respectively, i.e.

s 0 --- 0 1 —¢ -+ —¢
K — 0 52 - 0 0 1 - —c s = sin(0)
S oo e " c=cos(d), 0=1.2,
0 0 s" 0 O 1
4, 1=17,
Py =(pij), pij=4 -1, li—jl=1orli—j[=3,

0, otherwise.

Consider perturbation on the matrices A and Q:

C1/]|Ch|
i | Co/l|Cel G exoij
AA =107 L AQ=X. - A*XT'A-0,
Cs/[1Cs] Q=X —AX A0
Cy/||Cul

with Xy = X, + 10771 (I + E+ C5/||C5|), Cs, i = 1,2,3,4,5 are random
matrices generated by MATLAB function randn.

In Table 4 the perturbation estimates for different values of j are given.
All the bounds considered give close estimates of the perturbation in the
solution. The bound estys7174 is the sharpest ones.

Table 4: Numerical results of Example 4:
j =1 j=5 j=6 j=7
|AX]| 1.0039¢ — 04 1.0002e — 05 1.0091e — 06 9.9406e — 08
IAX|F  1.0552e —04 1.0427¢ — 05 1.0543e — 06 1.0467e¢ — 07

sun03 2.6909 2.7396 2.8096 2.7030
konppall 2.5130 2.5933 2.6243 2.5313
yinfl3 2.8063 2.8001 2.7989 2.7682
hasIl7a 2.0068 1.9932 2.0079 1.9677
hasqQ17a 2.6215 2.6722 2.7003 2.5668
hasqX17a 2.7530 2.8141 2.8438 2.7026
hasX17a 3.9335 4.0438 4.1108 3.9408
hasqX17b 3.1228 3.1016 3.1244 3.0620

hasX17b 4.8596 4.8266 4.8621 4.7649
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Example 5. Consider Eq. (1) with m = 2, n =4 and matrices A and Q as
follows:

Ay €T
A:<A2 ) Q=X — A*X 1A,

where Ay = 12A7,

1 0 0 1 2% 1 1 1
231 -1 1 0 1 1 1 26 1 1
A==l o 1 Xy =0 1 1 96 1
1 -1 -1 1 1 1 1 26

Consider perturbation on the matrices A and Q:

_0-2 [ GG — ¥ w14 _
AA =10 <02/HC2‘>’ AQ =X, —A'X " A-Q,
with X, = X, +10"%(I — E), F being the 4 x 4 matrix with all entries
equal to 1, C7, Cy random matrices generated by MATLAB function randn.
In Table 5 the perturbation estimates for different values of j are given.
Among the bounds considered in this example the bounds estronppa11 and
estsuno3 give the sharpest estimates followed by estnesx174 and estpasx17s-

Table 5: Numerical results of Example 5:
J j=2 j=3 j=1 j=5
|AX| 3.0000e — 04 3.0000e — 06 3.0000e — 08 3.0000e — 10
|AX|Fp  3.4641e — 04 3.4641le — 06 3.4641e —08 3.4641e — 10

sun03 5.1907 4.4964 5.4698 4.5634
konppall 3.9230 3.3392 4.1122 3.3200
yinf13 32.1669 28.8418 32.9264 29.6421
hasl17a 29.7512 26.8199 30.6258 27.5686
hasq@Q17a * * * *
hasqX17a 18.2291 16.1100 19.0277 16.2319
hasX17a 15.2685 13.0048 15.8923 12.8708
hasqX17b 18.3767 16.9686 19.4292 17.4715
hasX17b 15.5064 14.3843 16.5058 14.8296

Perturbation bounds depends from different parameters. In Table 6, we
report some parameters to considered examples.
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We denote
NQA = H\/Q—lA\/Q—1|
NXA = [[\f XA X

F(X4) = IXTHX -

)

_ Table 6:
B |XTUAl [XT'A| NQA  NXA AXTY k(X))
1.9443 1.4926  1.2253 0.9472  1.5385  2.9014
0.2119 0.1667  0.1672 0.1669 0.1766  3.6667
0.1637 0.1294 0.1234 0.1232 0.1630  4.3333
0.4149 0.2667  0.2667 0.2667  0.2667  1.5561
0.9478 0.9439  1.7048 0.8981  0.8617  1.1600

U W N =

4 Conclusion

Analysing the behaviour of the perturbation bounds considered in the paper,
we can point out as most effective the bounds estionppai1 (20), €stsunos (13),
esthaspira (24) with P =1, P = /X, or P = X;. The bound estp.sp174
with different value of P is very simple/fgr computing. It was the sharpest

for P = I in cases of small value of HX;lAH in considered examples. The
bound estp,spi7q for P = /X, is applicable always, but is not sharpest.
The bounds estonppa11 and estsuno3 are reliable and generally give satisfac-
tory accurate estimates. But the dependence of the bounds estyonppe11 and
estsuno3 On many parameters makes the difficult for computing in general.
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