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Abstract

Some existing perturbation bounds for a unique positive definite
solution of a nonlinear matrix equation connected to the interpolation
theory are analyzed and compared. We examine the behavior of the
perturbation bounds, considered in five sources, through experiments
with five numerical examples.

MSC: 65F10; 15A24

keywords: nonlinear matrix equation, perturbation bounds.

1 Introduction

Throughout this paper, Cp×q denotes the set of p× q complex matrices, and
Hn the set of n × n Hermitian matrices. A∗ stands conjugate transpose of
a matrix A, A > 0 (A ≥ 0) means that A is a Hermitian positive definite
(semidefinite) matrix. If A − B > 0 (or A − B ≥ 0) we write A > B (or
A ≥ B). I (or In) is the identity matrix of order n. The symbols ‖ · ‖, ‖ · ‖F
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and ρ(·) denote the spectral norm, the Frobenius norm, and the spectral
radius, respectively. For the matrices A = (aij) and B, A⊗B = (aijB) is a

Kronecker product. Finally, for a matrix Z, we denote with Ẑ the m ×m
block diagonal matrix with Z on its diagonal, i.e. Ẑ = Im ⊗ Z.

Consider the nonlinear matrix equation

X −A∗X̂−1A = Q , (1)

where A ∈ Cmn×n, Q ∈ Hn, and Q > 0.
Eq. (1) is a special case of the equation

X −A∗(X̂ − C)−1A = Q , (2)

where C ∈ Hmn and C ≥ 0. Eq. (2) is connected with certain interpolation
problems [1, 2, Chapter 7]. Ran and Reurings [1] have proved that, under
the condition Q̂ > C, Eq. (2) has a unique positive definite solution X+,

satisfying X̂+ > C. Hence, Eq. (1) has a unique positive definite solution.
Moreover, Liu and Zhang [3, Lemma 2.1] have proved that, under the con-
dition Q̂ > C, Eq. (2) is equivalent to an equation in the form of Eq. (1)
and used the Newton’s method for solving of Eq. (1).

In this paper, the unique positive definite solution of a matrix equation
we will call maximal solution.

Let

A =

 A1
...
Am

 ∈ Cmn×n, Ai ∈ Cn×n, i = 1, 2, . . . ,m.

Then Eq. (1) can be written as

X −
m∑
i=1

A∗iX
−1Ai = Q . (3)

Duan et al. [4] have investigated Eq. (3) with Q = I, using the Thomp-
son metric they proved that the matrix equation always has a unique positive
definite (maximal) solution. Moreover, in [4] on the matrix differentiation
have been given a perturbation bound for the maximal solution. Sun [5]
have obtained perturbation bounds, condition numbers for the maximal so-
lution of Eq. (2), and residual bounds for an approximate solution to the
maximal solution. In [6] two perturbation bounds and an explicit expres-
sion of the condition number for the maximal solution of Eq. (3) have been
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obtained. Residual bound for an approximate solution, calculated by an
iterative algorithm have been derived in [7]. In [8, 9] some modifications of
a perturbation bound from [6] are derived.

Eq. (1) (or (3)) for m = 1 arises in the analysis of stationary Gaussian
reciprocal processes over a finite interval [10, 11]. It has been investigated
for the existence a positive definite solution in [10, 12, 13] and it has been
executed the perturbation analysis in [14, 15, 16, 17].

In addition, there are many contributions in the literature to the solvabil-
ity, numerical solutions, and perturbation analysis for the matrix equations
X −

∑m
i=1A

∗
iX

δiAi = Q [18, 19, 20, 21], X −
∑m

i=1A
∗
iF(X)Ai = Q [22],

A0 +
∑k

i=1 σiA
∗
iX

piAi = 0 [23, 24], X ±A∗X−nA = Q [25].

Motivated by investigation of Popchev and Angelova in [17], in this paper
we analyze and compare the effectiveness and the accuracy of the existing
perturbation bounds for the maximal solution of Eq. (1).

2 Perturbation bounds

Consider the perturbed equation

X̃ − Ã∗ ̂̃X−1

Ã = Q̃ , (4)

where Ã and Q̃ (Q̃ > 0) are small perturbations of A and Q in (1), respec-
tively. We note that

Ã =

 Ã1
...

Ãm

 ∈ Cmn×n,
where Ãi, i = 1, 2, . . . ,m are small perturbations of Ai in (3), respectively.
Then, we write Eq. (4) as follows

X̃ −
m∑
i=1

Ã∗i X̃
−1Ãi = Q̃ . (5)

Let X+ and X̃+ be the maximal solutions of Eqs. (1) and (4), respec-
tively.

Denote ∆X+ = X̃+−X+, ∆Q = Q̃−Q, ∆A = Ã−A, and ∆Ai = Ãi−Ai.
We consider the perturbation bounds for equations (1) (or (3)) and (2)

proposed by Sun [2], Konstantinov et al. [23], Yin and Fang [6], and Hasanov
[8, 9].
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We use some general notations. Let

L = In2 +
m∑
i=1

(X−1
+ Ai)

T ⊗ (X−1
+ Ai)

∗
, (6)

Πp,q =

p∑
j=1

q∑
k=1

e
(p)
j e

(q)
k

T
⊗ e(q)

k e
(p)
j

T
, (7)

where e
(p)
j denotes the jth column of Ip.

2.1 The bound of Sun [2]

Sun [2] has obtained a perturbation bound (see [2, Theorem 2.1]) for the
maximal solution of Eq. (2). We formulate Sun’s results in case of C = 0.
Let

L−1(In ⊗ (X̂−1
+ A)∗) = U1 + iΩ1, L−1((X̂−1

+ A)T ⊗ In)Πmn,n = U2 + iΩ2,

where U1,Ω1, U2,Ω2 are real n2 ×mn2 matrices, i =
√
−1.

Let

l = ‖L−1‖−1, p =

∥∥∥∥( U1 + U2 Ω2 − Ω1

Ω2 + Ω1 U1 − U2

)∥∥∥∥ , (8)

γ = ‖X−1
+ ‖, β =

∥∥X̂−1
+ A

∥∥, β̃ =
∥∥X̂−1

+ Ã
∥∥, (9)

ε = p‖∆A‖F +
1

l

(
‖∆Q‖F + γ‖∆A‖‖∆A‖F ‖

)
, (10)

τ =
√
mβ̃2γ, δ1 = γ(β + β̃)‖∆A‖F . (11)

Theorem 1. (Theorem 2.1 from [2] in case of C = 0) Let X+ be the maximal
solution to Eq. (1). Define l, p, γ, β, β̃ by (8)–(11). If

Q̃ > 0, l > δ1 ,

ε ≤ (l − δ1)2

l
[
2τ + (l − δ1)γ + 2

√
τ [τ + (l − δ1)γ]

] , (12)

then the perturbed equation (4) has a unique maximal solution X̃+ and

‖∆X+‖F ≤
2lε

l − δ1 + lγε+
√

(l − δ1 + lγε)2 − 4[τ + (l − δ1)γ]lε
=: estsun03.

(13)
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2.2 The bound of Konstantinov et al. [23]

Konstantinov et al. [23] have obtained local and non-local perturbation
bounds for the matrix equation

A0 +
k∑
i=1

σiA
∗
iX

piAi = 0. (14)

One particular case of this equation is k = m + 1, A0 = Q, Am+1 = I,
σm+1 = pi = −1, pm+1 = σi = 1, i = 1, 2, . . . ,m, i.e. Eq. (1).

Now, we formulate the results from [23] in this particular case.

Let

δ =
(
‖∆Q‖F , ‖∆A1‖F , · · · , ‖∆Am‖F

)T
, (15)

WQ = L−1 = WQ0 + iWQ1,

WAi = σiL
−1(In ⊗ (Xpi

+Ai)
∗) = WAi0 + iWAi1,

WĀi
= σiL

−1((Xpi
+Ai)

T ⊗ In)Πn,n = WĀi0
+ iWĀi1

,

MAi =

(
WAi0 +WĀi0

WĀi1
−WAi1

WĀi1
+WAi1 WAi0 −WĀi0

)
,

WRQ =

(
WQ0 −WQ1

WQ1 WQ0

)
, kQ = ‖WQ‖,

kAi = ‖MAi‖, i = 1, 2, . . . ,m,

Γ =
(
Γ1,Γ2, . . . ,Γm+2

)
=
(
WRQ ,MA1 , . . . ,MAm+1

)
,

where L, Πp,q are from (6), (7).

Konstantinov et al. [23] have obtained the local perturbation bounds:

est1(δ) = kQ‖∆Q‖F +

m∑
i=1

kAi‖∆Ai‖F ,

est2(δ) = ‖Γ‖‖δ‖, est3(δ) =
√
δTRδ,

est(δ) = min{est2(δ), est3(δ)},

where R is an (m + 1) × (m + 1) real symmetric matrix with non-negative
entries rij = ‖ΓTi Γj‖, i, j = 1, 2, . . . ,m+ 1.

We note that, in case of real matrix coefficients in Eq. (1), the above
formulas are more simple (see [23]).
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Let

a0(δ) = est(δ) + ‖L−1‖‖X−1
+ ‖

m∑
i=1

‖∆Ai‖2F , (16)

a1(δ) = ‖L−1‖‖X−1
+ ‖2

m∑
i=1

(2‖Ai‖+ ‖∆Ai‖F )‖∆Ai‖F , (17)

a2(δ) = ‖L−1‖‖X−1
+ ‖3

m∑
i=1

(‖Ai‖+ ‖∆Ai‖F )2, (18)

Ω =
{
δ from (15) : a1(δ) + 2

√
a0(δ)a2(δ) ≤ 1

}
. (19)

The following non-local perturbation bound was obtained in [23].

Theorem 2. ([23, Theorem 5.1]) Let δ ∈ Ω, where Ω is given in (19). Then
the non-local perturbation bound

‖∆X+‖F ≤
2a0(δ)

1− a1(δ) +
√

(1− a1(δ))2 − 4a0(δ)a2(δ)
=: estkonppa11 (20)

is valid for Eq. (1), where ai(δ), i = 0, 1, 2 are determined by (16)-(18).

2.3 The bound of Yin and Fang [6]

Theorem 3. ([6, Theorem 2.1]) Let A, Q and Ã, Q̃ with Q, Q̃ positive
definite be coefficient matrices for Eqs. (1) and (4), respectively. Denote

b = 1− ‖A‖2‖X−1
+ ‖2 + ‖X−1

+ ‖‖∆Q‖ ,
c = ‖∆Q‖+ 2 ‖A‖‖X−1

+ ‖‖∆A‖+ ‖X−1
+ ‖‖∆A‖2 ,

D = b2 − 4c‖X−1
+ ‖.

If ‖A‖‖X−1
+ ‖ < 1 and

2 ‖∆A‖+ ‖∆Q‖ ≤
(
1− ‖A‖‖X−1

+ ‖
)2

‖X−1
+ ‖

, (21)

then the maximal solutions X+ and X̃+ the respective matrix equations (1)
and (4) satisfy

‖∆X+‖ ≤
b−
√
D

2‖X−1
+ ‖

=: estyinf13. (22)



On some perturbation bounds 303

2.4 The bounds of Hasanov [8, 9]

Applying the technique developed in [16], Hasanov have obtained the fol-
lowing result in [8].

Theorem 4. ([8, Theorem 2]) Let A, Q and Ã, Q̃ with Q, Q̃ positive definite
be coefficient matrices for Eqs. (1) and (4), respectively, P is a positive

definite matrix. Denote αp = ‖P̂X−1
+ AP−1‖, βp = ‖PX−1

+ P‖, where X+ is
the maximal solution of Eq. (1),

bp = 1− α2
p + βp‖P−1∆QP−1‖ ,

cp = ‖P−1∆QP−1‖+ 2αp‖P̂−1∆AP−1‖+ βp‖P̂−1∆AP−1‖2 .

If αp < 1 and

2‖P̂−1∆AP−1‖+ ‖P−1∆QP−1‖ ≤ (1− αp)2

βp
, (23)

then Dp = b2p − 4cpβp ≥ 0 and

‖∆X+‖ ≤ ‖P‖2
bp −

√
Dp

2βp
=: esthasP17a . (24)

We note that in [8] for the maximal solution X+ of Eq. (1) we have

ρ
((
X−T+ ⊗X−1

+

) m∑
i=1

ATi ⊗A∗i
)

= ρ
( m∑
i=1

(X−1
+ Ai)

T ⊗ (X−1
+ Ai)

∗
)
< 1,

ρ
( m∑
i=1

(X−1
+ Ai)

T ⊗ (X−1
+ Ai)

∗
)
≤
∥∥∥ m∑
i=1

A∗iX
−2
+ Ai

∥∥∥ =
∥∥X̂−1

+ A
∥∥2
.

In case of
∥∥X̂−1

+ A
∥∥ < 1, we can apply Theorem 4 with P = I. In this

case, the estimate esthasP17a in (24) we denote esthasI17a. But, in case of∥∥X̂−1
+ A

∥∥ ≥ 1 appears the question ”How to choose the matrix P , such that

‖P̂X−1
+ AP−1‖ < 1”. In [9] have been proven that

∥∥√̂X−1
+ A

√
X−1

+

∥∥ < 1.

Hence, Theorem 4 is applicable with P =
√
X+. In this case the estimate

esthasP17a in (24) we will denote by esthas
√
X17a. Moreover, in [9] have been

obtained an alternative result to Theorem 4 with P =
√
X+.
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Theorem 5. ([9, Theorem 3]) Let A, Q and Ã, Q̃ with Q, Q̃ positive definite
be coefficient matrices for Eqs. (1) and (4), respectively. Let

b1 = 1−
∥∥√̂X−1

+ A
√
X−1

+

∥∥2
+ ‖X−1

+ ‖‖∆Q‖ ,

c1 = ‖∆Q‖+ 2
∥∥√̂X−1

+ A
√
X−1

+

∥∥‖∆A‖+ ‖X−1
+ ‖‖∆A‖2 ,

where X+ is the maximal solution of Eq. (1). If

2‖∆A‖+ ‖∆Q‖ ≤

(
1−

∥∥√̂X−1
+ A

√
X−1

+

∥∥)2

‖X−1
+ ‖

, (25)

then D1 = b21 − 4c1‖X−1
+ ‖ ≥ 0 and

‖∆X+‖ ≤ ‖X+‖
b1 −

√
D1

2
=: esthas

√
X17b . (26)

In case of
∥∥X̂−1

+ A
∥∥ ≥ 1, but if ‖AX−1

+ ‖ < 1, then Theorem 4 is applicable
with P = X+. In this case, the estimate esthasP17a in (24) we will denote
by esthasX17a. Hasanov [9] has obtained following alternative result for this
case.

Theorem 6. ([9, Theorem 4]) Let A, Q and Ã, Q̃ with Q, Q̃ positive definite
be coefficient matrices for Eqs. (1) and (4), respectively. Let

b2 = 1− ‖AX−1
+ ‖2 + ‖X+‖‖X−1

+ ‖2‖∆Q‖ ,
c2 = ‖∆Q‖+ 2‖AX−1

+ ‖‖∆A‖+ ‖X−1
+ ‖‖∆A‖2 ,

where X+ is the maximal solution of Eq. (1). If α2 < 1 and

2‖∆A‖+ ‖∆Q‖ ≤
(1− ‖AX−1

+ ‖)2

‖X+‖‖X−1
+ ‖2

, (27)

then D2 = b22 − 4c2‖X+‖‖X−1
+ ‖2 ≥ 0 and

‖∆X+‖ ≤ ‖X+‖
b2 −

√
D2

2
=: esthasX17b . (28)

We note that, the maximal solution X+ of Eq. (1) satisfies X+ ≥ Q.

Hence, ‖
√
QX−1

+

√
Q‖ ≤ 1. Thus, if

∥∥√̂Q−1A
√
Q−1

∥∥ < 1, then∥∥√̂QX−1
+ A

√
Q−1

∥∥ ≤ ∥∥√QX−1
+

√
Q
∥∥∥∥√̂Q−1A

√
Q−1

∥∥ < 1.

Therefore, in case of
∥∥√̂Q−1A

√
Q−1

∥∥ < 1, Theorem 4 is applicable with
P =

√
Q. In this case, the estimate esthasP17a in (24) we denote esthas

√
Q17a.
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3 Numerical examples

We consider some numerical examples and compare the perturbation bounds.
Denote the ratio of the perturbation bounds to the estimated value as fol-
lows:

sun03 =
estsun03

‖∆X+‖F
, konppa11 =

estkonppa11

‖∆X+‖F
, yinf13 =

estyinf13

‖∆X+‖
,

hasI17a =
esthasI17a

‖∆X+‖
, has

√
X17a =

esthas
√
X17a

‖∆X+‖
,

hasX17a =
esthasX17a

‖∆X+‖
, has

√
Q17a =

esthas
√
Q17a

‖∆X+‖
,

has
√
X17b =

esthas
√
X17b

‖∆X+‖
, hasX17b =

esthasX17b

‖∆X+‖
,

where esthasI17a, esthas
√
X17a, esthasX17a, esthas

√
Q17a are denoted the per-

turbation bound esthasP17a in (24) for P = I, P =
√
X+, P = X+, and

P =
√
Q, respectively.

Example 1. ([6, Example 4.1]) Consider Eq. (1) with coefficient matrices

A =


−0.4326 −1.1465
−1.6665 1.1909

0.1253 1.1892
0.2877 −0.0376

 , Q =

(
0.1376 0.0656
0.0656 0.5616

)

and perturbations on the matrices A and Q

∆A = 10−j


10 6
2 4
8 4
6 1

 , ∆Q = 10−j
(

4 7
7 3

)
,

respectively.

The approximation of the maximal solution

X+ ≈
(

1.1572575 0.01971555
0.01971555 3.3569583

)
have been computed after 200 iteration by formula

Xk+1 = Q+A∗X̂−1
k A, X0 = Q. (29)
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The solution X̃+ to the perturbed equation (4) have been computed itera-
tively by formula (29), also, as X̃+ ≈ X̃200.

In Table 1 the perturbation bounds with different values of j are given.
The cases when the conditions of existence of a bound are violated are
denoted by an asterisk. In case of j = 5, j = 6, and j = 7 the perturbation
bounds estsun03 and estkonppa11 are sharper, but in case of j = 4.4 are not
applicable.

Table 1: Numerical results of Example 1:
j j = 4.4 j = 5 j = 6 j = 7

‖∆X+‖ 0.0012 3.0193e− 04 3.0159e− 05 2.9752e− 06
‖∆X+‖F 0.0013 3.2960e− 04 3.2929e− 05 3.2550e− 06

sun03 ∗ 10.2369 9.5045 9.5514
konppa11 ∗ 10.5080 9.4466 9.4704
yinf13 ∗ ∗ ∗ ∗
hasI17a ∗ ∗ ∗ ∗
hasqQ17a ∗ ∗ ∗ ∗
hasqX17a 35.3452 31.9281 31.1718 31.5215
hasX17a ∗ ∗ ∗ ∗
hasqX17b 45.6326 39.8713 38.6852 39.0970
hasX17b ∗ ∗ ∗ ∗

Example 2. ([6, Example 4.2]) Consider Eq. (1) with m = 2, n = 4 and
matrices A and Q as follows:

A =

(
A1

A2

)
, Q := X+ −A∗X̂−1

+ A,

where

A1 =
1

100


1 2 3 4
1 22.5 12 2
2 9 7 3
12 1 2 19

 , A2 =
2
√

3

45


1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1


and

X+ =


2.5 1 1 1
1 2.5 1 1
1 1 2.5 1
1 1 1 2.5

 .
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Consider perturbation on the matrices A and Q:

∆A = 10−2j

(
C1/‖C1‖
C2/‖C2‖

)
, ∆Q := X̃+ − Ã∗ ̂̃X−1

+ Ã−Q,

with X̃+ = X+ + 10−2j(I − E), E being the 4 × 4 matrix with all entries
equal to 1, C1, C2 random matrices generated by MATLAB function randn.

In Table 2 the perturbation estimates for different values of j are given.
Among the bounds considered in this example the bound esthasI17a, followed
by estkonppa11 and estsun03, gives the sharpest estimates.

Table 2: Numerical results of Example 2:
j j = 2 j = 3 j = 4 j = 5

‖∆X‖ 3.0000e− 04 3.0000e− 06 3.0000e− 08 3.0000e− 10
‖∆X‖F 3.4641e− 04 3.4641e− 06 3.4641e− 08 3.4641e− 10

sun03 1.3939 1.4355 1.3715 1.3958
konppa11 1.3736 1.4265 1.3674 1.3784
yinf13 1.4950 1.5490 1.4506 1.4890
hasI17a 1.3609 1.4201 1.3288 1.3654
hasqQ17a 2.9440 2.5763 2.6747 2.6290
hasqX17a 2.9027 2.5441 2.6388 2.6109
hasX17a 10.9163 9.4421 9.5722 9.6494
hasqX17b 4.9918 5.2088 4.8738 5.0082
hasX17b 18.6834 19.4593 18.2115 18.7087

In following two examples we consider Eq. (1) with complex matrices A.

Example 3. Consider Eq. (1) with m = 3, n = 5 and matrices A and Q as
follows:

A =

 A1

A2

A3

 , Q := X+ −A∗X̂−1
+ A,

where A1 = 1+i
25 A0, A2 = 1+i

25 A
T
0 , A3 = 1

70A
T
0 A0, with i =

√
−1, and

A0 =


1 0 0 0 1
−1 1 0 0 1
−1 −1 1 0 1
−1 −1 −1 1 1
−1 −1 −1 −1 1

 , X+ =


2.5 1 1 1 1
1 2.5 1 1 1
1 1 2.5 1 1
1 1 1 2.5 1
1 1 1 1 2.5

 .
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Consider perturbation on the matrices A and Q:

∆A =
10−2j

‖C‖

 20iC
20iCT

CT + C

 , ∆Q := X̃+ − Ã∗ ̂̃X−1
+ Ã−Q,

with X̃+ = X+ + 10−2j(I − E), E being the 5 × 5 matrix with all entries
equal to 1, C random matrix generated by MATLAB function randn.

In Table 3 the perturbation estimates for different values of j are given.
The most effective bound is the bound esthasI17a, followed by the bounds
estyinf13, estkonppa11 and estsun03.

Table 3: Numerical results of Example 3:
j j = 2 j = 3 j = 4 j = 5

‖∆X‖ 4.0000e− 04 4.0000e− 06 4.0000e− 08 4.0000e− 10
‖∆X‖F 4.4721e− 04 4.4721e− 06 4.4721e− 08 4.4721e− 10

sun03 3.3011 3.3570 3.2887 3.0113
konppa11 3.4066 3.4447 3.3836 3.0894
yinf13 2.8904 3.1122 3.2372 2.7202
hasI17a 2.4637 2.6985 2.7782 2.3140
hasqQ17a 7.6038 7.6915 9.1061 6.3522
hasqX17a 7.5700 7.6329 9.0323 6.3220
hasX17a 38.7663 40.4155 48.8969 32.6099
hasqX17b 10.3512 11.3791 11.6895 9.7180
hasX17b 54.2108 58.2862 60.6146 50.9264

Example 4. Consider Eq. (1) with m = 4, n = 9 and matrices A and Q as
follows:

A =


A1

A2

A3

A4

 , Q := X+ −A∗X̂−1
+ A,

where

A1 =
1

n
(Kn + iPn), A2 =

1

n
(3Kn + 2iPn), A3 =

1

n
(4Kn + 3iPn),

A4 =
1

n
(5Kn + 3iPn), X+ = nI + Pn,
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with Kn and Pn are Kahan’s and Poisson’s matrices, respectively, i.e.

Kn =


s 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sn




1 −c · · · −c
0 1 · · · −c
...

...
. . .

...
0 0 · · · 1

 ,
s = sin(θ)
c = cos(θ), θ = 1.2,

Pn = (pij), pij =


4, i = j,
−1, |i− j| = 1 or |i− j| = 3,

0, otherwise.

Consider perturbation on the matrices A and Q:

∆A = 10−j


C1/‖C1‖
C2/‖C2‖
C3/‖C3‖
C4/‖C4‖

 , ∆Q := X̃+ − Ã∗ ̂̃X−1
+ Ã−Q,

with X̃+ = X+ + 10−j−1(I + E + C5/‖C5‖), Ci, i = 1, 2, 3, 4, 5 are random
matrices generated by MATLAB function randn.

In Table 4 the perturbation estimates for different values of j are given.
All the bounds considered give close estimates of the perturbation in the
solution. The bound esthasI17a is the sharpest ones.

Table 4: Numerical results of Example 4:
j j = 4 j = 5 j = 6 j = 7

‖∆X‖ 1.0039e− 04 1.0002e− 05 1.0091e− 06 9.9406e− 08
‖∆X‖F 1.0552e− 04 1.0427e− 05 1.0543e− 06 1.0467e− 07

sun03 2.6909 2.7396 2.8096 2.7030
konppa11 2.5130 2.5933 2.6243 2.5313
yinf13 2.8063 2.8001 2.7989 2.7682
hasI17a 2.0068 1.9932 2.0079 1.9677
hasqQ17a 2.6215 2.6722 2.7003 2.5668
hasqX17a 2.7530 2.8141 2.8438 2.7026
hasX17a 3.9335 4.0438 4.1108 3.9408
hasqX17b 3.1228 3.1016 3.1244 3.0620
hasX17b 4.8596 4.8266 4.8621 4.7649
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Example 5. Consider Eq. (1) with m = 2, n = 4 and matrices A and Q as
follows:

A =

(
A1

A2

)
, Q := X+ −A∗X̂−1

+ A,

where A1 = 12AT2 ,

A2 =
2
√

3

45


1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1

 , and X+ =
1

10


26 1 1 1
1 26 1 1
1 1 26 1
1 1 1 26

 .

Consider perturbation on the matrices A and Q:

∆A = 10−2j

(
C1/‖C1‖
C2/‖C2‖

)
, ∆Q := X̃+ − Ã∗ ̂̃X−1

+ Ã−Q,

with X̃+ = X+ + 10−2j(I − E), E being the 4 × 4 matrix with all entries
equal to 1, C1, C2 random matrices generated by MATLAB function randn.

In Table 5 the perturbation estimates for different values of j are given.
Among the bounds considered in this example the bounds estkonppa11 and
estsun03 give the sharpest estimates followed by esthasX17a and esthasX17b.

Table 5: Numerical results of Example 5:
j j = 2 j = 3 j = 4 j = 5

‖∆X‖ 3.0000e− 04 3.0000e− 06 3.0000e− 08 3.0000e− 10
‖∆X‖F 3.4641e− 04 3.4641e− 06 3.4641e− 08 3.4641e− 10

sun03 5.1907 4.4964 5.4698 4.5634
konppa11 3.9230 3.3392 4.1122 3.3200
yinf13 32.1669 28.8418 32.9264 29.6421
hasI17a 29.7512 26.8199 30.6258 27.5686
hasqQ17a ∗ ∗ ∗ ∗
hasqX17a 18.2291 16.1100 19.0277 16.2319
hasX17a 15.2685 13.0048 15.8923 12.8708
hasqX17b 18.3767 16.9686 19.4292 17.4715
hasX17b 15.5064 14.3843 16.5058 14.8296

Perturbation bounds depends from different parameters. In Table 6, we
report some parameters to considered examples.
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We denote

NQA =
∥∥√̂Q−1A

√
Q−1

∥∥,
NXA =

∥∥√̂X−1
+ A

√
X−1

+

∥∥,
k(X+) = ‖X−1

+ ‖‖X+‖.

Table 6:

Ex. ‖X−1
+ ‖‖A‖

∥∥X̂−1
+ A

∥∥ NQA NXA ‖AX−1
+ ‖ k(X+)

1 1.9443 1.4926 1.2253 0.9472 1.5385 2.9014
2 0.2119 0.1667 0.1672 0.1669 0.1766 3.6667
3 0.1637 0.1294 0.1234 0.1232 0.1630 4.3333
4 0.4149 0.2667 0.2667 0.2667 0.2667 1.5561
5 0.9478 0.9439 1.7048 0.8981 0.8617 1.1600

4 Conclusion

Analysing the behaviour of the perturbation bounds considered in the paper,
we can point out as most effective the bounds estkonppa11 (20), estsun03 (13),
esthasP17a (24) with P = I, P =

√
X+, or P = X+. The bound esthasP17a

with different value of P is very simple for computing. It was the sharpest

for P = I in cases of small value of
∥∥X̂−1

+ A
∥∥ in considered examples. The

bound esthasP17a for P =
√
X+ is applicable always, but is not sharpest.

The bounds estkonppa11 and estsun03 are reliable and generally give satisfac-
tory accurate estimates. But the dependence of the bounds estkonppa11 and
estsun03 on many parameters makes the difficult for computing in general.
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