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Abstract

In this work we establish new local convergence theorems with error
estimates for the Inverse Weierstrass iterative method for simultane-
ous approximations of polynomial zeros. Our approach enlarges the
convergence radius and improves the known local convergence results.
Numerical examples are also provided.
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1 Introduction

Let P (z) be a monic polynomial

P (z) = a0 + a1z + . . .+ an−1z
n−1 + zn , (1)
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of degree n ≥ 2, with simple real or complex zeros α1, α2, . . . , αn, and let

z
(0)
1 , z

(0)
2 , . . . , z

(0)
n be distinct reasonable close approximations of these zeros.

In this study we consider a simultaneous iterative method defined by

z(k+1) = G
(
z(k)

)
= Gk+1

(
z(0)
)
, k = 0, 1, 2, . . . , (2)

where G : Cn → Cn is a vector valued function with components

Gi = Gi(z) =
z2i

zi +Wi(z)
, z = (z1, . . . , zn) , i = 1, . . . , n , (3)

and the term

Wi(z) =
P (zi)∏n

j 6=i(zi − zj)
, (i = 1, . . . , n) (4)

is called Weierstrass’ correction.
The iteration method (2)-(3) is a modification of the famous Weierstrass’

iterative method for simultaneously finding all the zeros of polynomials

z
(k+1)
i = z

(k)
i −Wi(z

(k)) , i = 1, 2, . . . , n, k ≥ 0, (5)

which is also called Durand-Kerner, Weierstrass-Dochev, or shorter the
WDK-method. It is originally proposed by Weierstrass in 1891 [1], rediscov-
ered later by Durand [2], Dochev [3], Kerner [4], Prešić [5], and since then it
has been investigated by many authors (see [6, 8, 9, 10, 11, 12, 14, 15, 16]).

The modified method (2)-(3) was firstly introduced in [18], and some
recent results were obtained in [19, 20, 21, 22].

Throughout this paper, we will use only the maximum vector norm de-
fined by

‖z‖∞ = max
i
|zi| ,

and we will follow the usual convention that a summation over the empty
set of indices equals 0, while a product over the same set equals 1.

2 Local Convergence Analysis

First, we prove some auxiliary results.

Lemma 1 Let d > 0, c ≥ 0, q > 1, n ≥ 2 and(
d− c
d− 2c

)n+1

< q . (6)
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Then the following relations hold true

(i)

(
d− c
d− 2c

)n−1
< q

n−1
n+1 ; (7)

(ii) c < kd , where k =
q − 1

2q − 1
; (8)

(iii)
c

d− c
<
q

1
n+1 − 1

q
1

n+1

<
q − 1

q
. (9)

Proof. (i) The claim (7) is a direct consequence of the assumption (6) and
the choice of q.

(ii) The inequality (6) is equivalent to the following two inequalities

d− c
d− 2c

< q
1

n+1 (10)

and consequently

c <
q

1
n+1 − 1

2q
1

n+1 − 1
d . (11)

The assertion (8) follows from relation (11), assumption n ≥ 2 and the
choice of q.

(iii) The first inequality in (9) follows from (11) and the choice of d. The
second inequality in (9) follows from (8) and the inequality

c

d− c
<

kd

d− kd
=

k

1− k
.

Corollary 1 Let q ∈ (1, 2], then from the relations (7), (8) and (9) of
Lemma 1 it follows that

c <
d

3
(12)

and
c

d− c

(
d− c
d− 2c

)n−1
< 1 . (13)

Lemma 2 Let the assumptions of Lemma 1 hold true and q ∈ (1, 2]. Then

0 <

d
d−c

(
d−c
d−2c

)n−1
− 1

1− c
d−c

(
d−c
d−2c

)n−1 < 1 . (14)
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Proof. It is easy to show that

d

d− c

(
d− c
d− 2c

)n−1
> 1 ,

and using (13) we get the first inequality in (14).

The second inequality in (14) holds true if and only if

d

d− c

(
d− c
d− 2c

)n−1
− 1 < 1− c

d− c

(
d− c
d− 2c

)n−1
or equivalently

g(c, d, n) =

(
d− c
d− 2c

)n−1
+ 2

c

d− c

(
d− c
d− 2c

)n−1
< 2 . (15)

We can bound g(c, d, n) by using the relations (7) and (9), as follows

g(c, d, n) < q
n−1
n+1 + 2

q
1

n+1 − 1

q
1

n+1

q
n−1
n+1 = 3q

n−1
n+1 − 2q

n−2
n+1 = h(n) . (16)

Now, we will prove that h(n) ≤ 2. For n = 2 from the choice of q, we have

h(2) = 3q
1
3 − 2 < 2 .

It is easy to prove that the function h(n) is monotonically increasing and
also

lim
n→∞

h(n) = q ≤ 2 .

From the last expressions, (15) and (16), it follows the statement (14).

Further, in order to prove the main result we use the identity (given by
[9])

n−1∏
j=1

un − vj
un − uj

− 1 =

n−1∑
s=1

us − vs
un − us

s−1∏
j=1

un − vj
un − uj

, (17)

which is valid for any 2n numbers ui, vi, such that ui 6= uj for i 6= j (i, j =
1, . . . , n).

Theorem 1 Let P ∈ C[z] be a polynomial of degree n ≥ 2, where

α = {α ∈ Cn : αi 6= 0 and αi 6= αj for i, j = 1, . . . , n}
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is the root vector of P , and let

d = min{δ, γ} , where δ = minj 6=i|αi − αj | and γ = mini|αi| .

If the initial guess z(0) ∈ Cn, satisfies the inequality

‖z(0) − α‖ ≤ ρ(n, d) :=
2

1
n+1 − 1

2.2
1

n+1 − 1
d , (18)

then
(i) the modified Waierstrass’ iteration (2)-(3) is well defined and con-

verges to α quadratically;
(ii) the asymptotic convergence rate satisfies

limk→∞
‖z(k+1) − α‖
‖z(k) − α‖2

≤ n

d
. (19)

Proof. The (k + 1)th iteration stage of the algorithm (2) is

z
(k+1)
i =

(z
(k)
i )2

z
(k)
i +Wi(z(k))

, k ≥ 0, i = 1, 2, . . . , n . (20)

For easy of later comparisons, we will use the following equivalent form of
(20) (see [22])

z
(k+1)
i = z

(k)
i −

Wi(z
(k))

1 + Wi(z(k))

z
(k)
i

, i = 1, 2, . . . , n , (21)

which implies

z
(k+1)
i − αi = z

(k)
i − αi −

Wi(z
(k))

1 + Wi(z(k))

z
(k)
i

and consequently

z
(k+1)
i − αi = (z

(k)
i − αi)

1−

∏n
j 6=i

z
(k)
i −αj

z
(k)
i −z

(k)
j

1 + Wi(z(k))

z
(k)
i



= (z
(k)
i − αi)

1−
∏n
j 6=i

z
(k)
i −αj

z
(k)
i −z

(k)
j

+ Wi(z
(k))

z
(k)
i

1 + Wi(z(k))

z
(k)
i

 .
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For the error in each component we get

|z(k+1)
i − αi| = |z(k)i − αi|

∣∣∣∣∣∣∣∣
1−

∏n
j 6=i

z
(k)
i −αj

z
(k)
i −z

(k)
j

+ Wi(z
(k))

z
(k)
i

1 + Wi(z(k))

z
(k)
i

∣∣∣∣∣∣∣∣ ,
which implies

‖z(k+1) − α‖ ≤ ‖z(k) − α‖max
i

∣∣∣∣∣∣∣∣
1−

∏n
j 6=i

z
(k)
i −αj

z
(k)
i −z

(k)
j

+ Wi(z
(k))

z
(k)
i

1 + Wi(z(k))

z
(k)
i

∣∣∣∣∣∣∣∣ . (22)

Further, we will bound the amplification factor for the ith component. Let
for fixed k and i denote

A
(k)
i :=

∣∣∣∣∣∣∣∣
1−

∏n
j 6=i

z
(k)
i −αj

z
(k)
i −z

(k)
j

+ Wi(z
(k))

z
(k)
i

1 + Wi(z(k))

z
(k)
i

∣∣∣∣∣∣∣∣ .
Then the following inequality is valid

A
(k)
i ≤

∣∣∣∣∏n
j 6=i

z
(k)
i −αj

z
(k)
i −z

(k)
j

− 1

∣∣∣∣+

∣∣∣∣ z(k)i −αi

z
(k)
i

∣∣∣∣ ∣∣∣∣∏n
j 6=i

z
(k)
i −αj

z
(k)
i −z

(k)
j

∣∣∣∣
1−

∣∣∣∣ z(k)i −αi

z
(k)
i

∣∣∣∣ ∣∣∣∣∏n
j 6=i

z
(k)
i −αj

z
(k)
i −z

(k)
j

∣∣∣∣ . (23)

We next establish the following inequalities

|z(k)i − z
(k)
j | ≥ |αi − αj | − |z

(k)
i − αi| − |z

(k)
j − αj | ≥ d− 2‖z(k) − α‖ , (24)

|z(k)i | ≥ |αi| − |z
(k)
i − αi| ≥ d− ‖z

(k) − α‖ (25)

and∣∣∣∣∣ z(k)i − αj
z
(k)
i − z

(k)
j

∣∣∣∣∣ =

∣∣∣∣∣1 +
z
(k)
j − αj

z
(k)
i − z

(k)
j

∣∣∣∣∣ ≤ 1 +
‖z(k) − α‖

d− 2‖z(k) − α‖
=

d− ‖z(k) − α‖
d− 2‖z(k) − α‖

.

(26)
Substituting

us = z
(k)
s 1 ≤ s < i− 1

us = z
(k)
s+1 i <= s ≤ n− 1

us = z
(k)
i , s = n

and


vs = αs 1 ≤ s < i− 1
vs = αs+1 i <= s ≤ n− 1
vs = αi , s = n
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in the identity (17) and using (23), (24), (25) we obtain

A
(k)
i ≤

∑n−1
s=1

‖z(k)−α‖
d−2‖z(k)−α‖

∏s−1
j=1

(
d−‖z(k)−α‖
d−2‖z(k)−α‖

)
+ ‖z(k)−α‖

d−‖z(k)−α‖
∏n
j 6=i

(
d−‖z(k)−α‖
d−2‖z(k)−α‖

)
1− ‖z(k)−α‖

d−‖z(k)−α‖
∏n
j 6=i

(
d−‖z(k)−α‖
d−2‖z(k)−α‖

) ,

which implies

A
(k)
i ≤

‖z(k)−α‖
d−2‖z(k)−α‖

∑n−2
s=0

(
d−‖z(k)−α‖
d−2‖z(k)−α‖

)s
+ ‖z(k)−α‖

d−‖z(k)−α‖

(
d−‖z(k)−α‖
d−2‖z(k)−α‖

)n−1
1− ‖z(k)−α‖

d−‖z(k)−α‖

(
d−‖z(k)−α‖
d−2‖z(k)−α‖

)n−1
and consequently

A
(k)
i ≤

(
d−‖z(k)−α‖
d−2‖z(k)−α‖

)n−1
− 1 + ‖z(k)−α‖

d−‖z(k)−α‖

(
d−‖z(k)−α‖
d−2‖z(k)−α‖

)n−1
1− ‖z(k)−α‖

d−‖z(k)−α‖

(
d−‖z(k)−α‖
d−2‖z(k)−α‖

)n−1 . (27)

Finally, from the last expression, it follows that the amplification factor for
the error norm in (22) can be bounded as follows:

A(k) := max
i
A

(k)
i ≤

d
d−‖z(k)−α‖

(
d−‖z(k)−α‖
d−2‖z(k)−α‖

)n−1
− 1

1− ‖z(k)−α‖
d−‖z(k)−α‖

(
d−‖z(k)−α‖
d−2‖z(k)−α‖

)n−1 = ξk(n, d) .

Substituting c = ‖z(k)−α‖ in Lemma 2 and using the assumption (18) and
Lemma 1, we obtain

ξk(n, d) < 1 ,

whenever
‖z(k) − α‖ < ρ(n, d) .

Since this bound does not depend on k and it follows by induction from the
assumption (18). Then ξ0 < 1 is a uniform upper bound for all the ξk. This
completes the proof of the claim (i).

(ii) From (22) and the derivation of (27), it follows that

‖z(k+1) − α‖
‖z(k) − α‖2

≤
1

d−2‖z(k)−α‖
∑n−2
s=0

(
d−‖z(k)−α‖
d−2‖z(k)−α‖

)s
+ 1

d−‖z(k)−α‖

(
d−‖z(k)−α‖
d−2‖z(k)−α‖

)n−1
1− ‖z(k)−α‖

d−‖z(k)−α‖

(
d−‖z(k)−α‖
d−2‖z(k)−α‖

)n−1
and giving in the limit, as k → ∞, we get ‖z(k) − α‖ → 0 and the claim

(19).



Local convergence of the Inverse Weierstrass method 273

In the next theorem we consider the case a0 = 0 in (1), i.e. there exists s
such that αs = 0 for s = 1, . . . , n. Without loss of generality we can assume
that αn = 0. We state the following theorem without proof (see [20] for the
proof).

Theorem 2 Let P ∈ C[z] be a polynomial of degree n ≥ 2 with simple zeros,
such that

αi is

{
6= 0, i = 1, . . . , n− 1
= 0, i = n

and let d = {minj 6=i|αi−αj | : i, j = 1, . . . , n}. If the initial guess z(0) ∈ Cn,
satisfies the initial condition (18) from Theorem 2

‖z(0) − α‖ ≤ ρ(n, d) ,

the modified Weierstrass iteration (2)-(3) is well defined and converges
(i) quadratically to α1, α2, . . . , αn−1;
(ii) at least linearly to αn = 0.

3 Comparison with earlier convergence results

In our previous work [20], we show that if the initial approximation z(0) ∈ Cn

satisfies

‖z(0) − α‖ ≤ τ(n, d) =
n−1
√

4/3− 1

2 n−1
√

4/3− 1
d , (28)

then the iteration (2)-(3) converges to α quadratically (see also [21]).
In [22], we have proved that if the initial approximation z(0) ∈ Cn satis-

fies

‖z(0) − α‖ ≤ σ(n, d) =
1

an+ 4
d , (29)

where a ≈ 1.76 is the unique root of the equation t = exp(1/t), then the
iteration (2)-(3) converges to α quadratically.

The radius of convergence ρ(n, d) defined by (18) (in Theorem 1) is larger
than τ(n, d) and σ(n, d). Indeed, the ratios ρ(n, d)/τ(n, d) and ρ(n, d)/σ(n, d)
do not depend on d, and we have the limits

lim
n→∞

ρ(n, d)

τ(n, d)
≈ 2.4

and

lim
n→∞

ρ(n, d)

σ(n, d)
≈ 1.2 .

The comparative values of the asserted radiuses are included in Table 1.
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Table 1: Some comparative values of ρ(n, d), τ(n, d) and σ(n, d).

n ρ(n,d)
d

τ(n,d)
d

σ(n,d)
d

ρ(n,d)
τ(n,d)

ρ(n,d)
σ(n,d)

2 0.17 0.2 0.13 0.85 1.28
3 0.13 0.11 0.10 1.16 1.27
4 0.11 0.08 0.09 1.36 1.26
5 0.09 0.06 0.07 1.51 1.25
6 0.08 0.05 0.06 1.62 1.25
10 0.05 0.03 0.04 1.88 1.24
20 0.03 0.01 0.02 2.12 1.23
50 0.01 0.005 0.01 2.28 1.22
100 0.006 0.002 0.005 2.34 1.21

4 Numerical Examples

In this section, we provide several numerical examples to show the local
convergence properties of the considered method (2)-(3).

Example 1 We take the polynomial

p(z) = z5 − 15.5z4 + 77.5z3 − 155z2 + 124z − 32

with root vector α = (0.5, 1, 2, 4, 8), which was studied in Niell ([17], Ex.7.3).
We use the same initial approximation z(0) = (0.45, 0.9, 1.8, 3.6, 7.2).

Table 2: Numerical results for Example 1.

iter(i) z
(i)
1 z

(i)
2

0 0.45 0.9
2 0.5150080103196240 1.002739480385864
6 0.5000000000000002 0.999999999999998

z
(i)
3 z

(i)
4 z

(i)
5

1.8 3.6 7.2
1.996805551378158 3.994885604749412 8.003591516944205
1.999999999999994 3.999999999999996 8.000000000000002

In this case the radius of convergence (from Theorem 1) is

ρ(n, d) = ρ(5, 0.5) ≈ 0.049
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and the condition (18) is satisfied for z(2), i.e.

‖z(2) − α‖ ≈ 0.015 < ρ(5, 0.5) .

The stopping criteria ‖z(i) − α‖ ≤ 10−15 is reached after six iterations, see
Table 2.

For the same polynomial with the classical Weierstrass’ iterative method
(5), if we use the same initial vector and stopping criteria, we get the root
vector after eight iterations (see [17]).

Example 2 Consider the polynomial

p(z) = z3 − 8z2 − 23z + 30 ,

with root vector α = (−3, 1, 10) and the initial guess z(0) = (−4, 2, 9) which
is taken from Dochev[3](see also [16]).

In this case the radius of convergence (from Theorem 1) is

ρ(n, d) = ρ(3, 1) ≈ 0.1372

and the condition (18) is satisfied for z(2), i.e.

‖z(2) − α‖ ≈ 0.0914 < ρ(3, 1) .

The stopping criteria ‖z(i) − α‖ ≤ 10−15 is reached after six iterations, see
Table 3.

Table 3: Numerical results for Example 2.

iter(i) z
(i)
1 z

(i)
2 z

(i)
3

0 -4 2 9
2 -3.040886694525941 1.091441307965112 9.999998807826081
6 -3.000000000000000 1.000000000000000 10.0000000000000

With the classical Weierstrass’ iterative method (5), we get the root
vector after six iterations, for the same initial vector and same stopping
criteria (see [16]).

Example 3 Consider the polynomial

f(z) = z9 + 3z8 − 3z7 − 9z6 + 3z5 + 9z4 + 99z3 + 297z2 − 100z − 300

with the zero vector α = (2i, 2 + i,−3,−2i,−1, 1,−2 + i, 2− i,−2− i).
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We use Abert’s initial approximation vector z(0) (see [7]) given by

z
(0)
k = −a1

n
+ r0 exp iθk , θk =

π

n

(
2k − 3

2

)
, k = 1, . . . , n ,

where n = 9 and r0 = 10 (see also [13]).
The radius of convergence is

ρ(n, d) = ρ(9, 1) ≈ 0.0628

and the condition (18) is satisfied for z(2), i.e.

‖z(8) − α‖ ≈ 0.0207 < ρ(9, 1) .

The stopping criteria ‖z(i) − α‖ ≤ 10−15 is reached after eleven iterations,
see Table 4.

Table 4: Numerical results for Example 3.

iter(i) z
(i)
1 z

(i)
2

0 -1.263 +1.736i -4.683 +7.660i
8 0.0050 + 1.9960i 1.9847 + 0.9861i
11 2.963× 10−18 + 2i 2+i

z
(i)
3 z

(i)
4

-11.11+10i -17.53 +7.660i
-3.0039 - 0.0003i - 2.0005i
−3 + 1.009× 10−18i 5.340× 10−18 − 2i

z
(i)
5 z

(i)
6

-20.95+1.736i -19.77 -5i
-1.0003 + 0.0005i 1.0031 - 0.0022i
−1 + 2.222× 10−19i 1 + 2.568× 10−18i

z
(i)
7 z

(i)
8 z

(i)
9

-14.53-9.396i -7.690 -9.396i -2.450-4.999i
-1.9999 + 1.0000i 2.0086 - 1.0093i -1.9971 - 0.9993i

−2 + i 2− i −2− i
With Weierstrass’ classical iterative method (5), we get the root vector

after same number of iterations, if we use the same initial vector and stopping
criteria.
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5 Conclusion

This work is devoted to convergence analysis of a modified Weierstrass it-
erative method for simultaneous approximation of polynomial zeros. Our
goal was to improve the existing convergence analysis results. We establish
a new radius of convergence, which enlarges the existing radiuses. We have
compared all the known radiuses of convergence. Numerical results with dif-
ferent examples show that the Inverse Weierstrass iterative method (2)-(3)
have even larger radius of convergence. The included numerical examples
confirm that the proposed algorithm has very similar convergence properties
with the classical Weierstrass method (5).
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zero-finding methods, Numer. Math. 69:353372, 1995.
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[13] M.Petković, S.Ilić, S.Tričković, A family of simultaneous zero-finding
methods, Comput. Math. Appl. 34:49-59, 1997.

[14] D.F. Han, The convergence of the Durand-Kerner method for simulta-
neously finding all zeros of a polynomial, J. Comput. Math. 18:567-570,
2000.

[15] P.D. Proinov, A new semilocal convergence theorem for the Weierstrass
method from data at one point, C. R. Acad. Bulg. Sci. 59, No 2:131-136,
2006.

[16] P.D. Proinov, M.D. Petkova, A new semilocal convergence theorem for
the Weierstrass method for finding zeros of a polynomial simultane-
ously, Journal of complexity , 30, Issue.3:366-380, 2014.

[17] A.M. Niel, The simultaneous approximation of polynomial roots, Com-
puters and Mathematics with applications, 41:1-14, 2001.

[18] G.H. Nedzhibov, Similarity transformations between some companion
matrices, AIP Conf. Proc. 1631:375-382, 2014.

[19] G.H. Nedzhibov, Inverse Weierstrass-Durand-Kerner Iterative Method,
International Journal of Applied Mathematics, ISSN:2051-5227 , 28,
Issue.2:1258-1264, 2013.



Local convergence of the Inverse Weierstrass method 279

[20] G.H. Nedzhibov, On local convergence analysys of the Inverse WDK
method, MATHTECH 2016, Proceedings of the international confer-
ence1:118-126, 2016.

[21] G.H. Nedzhibov, Local convergence of the Inverse Weierstrass method
for simultaneous approximation of polynomial zeros, International
Journal of Mathematical Analysis 10, No. 26:1295-1304, 2016.

[22] G.H. Nedzhibov, Convergence of the modified inverse Weierstrass
method for simultaneous approximation of polynomial zeros, Commu-
nications in Numerical Analysis 2016, No. 1: 74-80, 2016.


