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Abstract

In this work we deal with the problem of minimization of the mean
square of the final value of an output of a controlled stochastic sys-
tem having the state space representation described by a system of
Itô differential equations. We assume that the system is controlled by
piecewise constant controls which are non-anticipative with respect to
the Brownian motion involved in the mathematical model of the con-
trolled system. We provide explicit formulae of the optimal controls
and we show that these are in a state feedback form. For the imple-
mentation of these optimal controls we need only the measured values
of the states at discrete time instances. The gain matrices of the opti-
mal control are computed based on the solution of a matrix backward
differential equation with finite jumps of Riccati type. We also analyze
the dependence of the value of the optimal performance with respect
to the length of the sampling period.
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1 Introduction

The stochastic linear quadratic optimal control problem is one of the most
important optimal control problems and has been playing a central role in
modern control theory. Moreover, the sampled-data systems have scored a
great success in the past decades. In [6, 7], the authors considered H2 and
LQ robust sampled-data control problems under a unified framework. The
problems of stochastic stability and robust control for a class of uncertain
sampled-data systems with random jumping parameters described by finite
state semi-Markov process are studied in [5], where the design procedure
for robust multirate sampled-data control is formulated as linear matrix
inequalities.

In this paper, we consider a stochastic system where the state space rep-
resentation is described by a system of Itô differential equations. We analyze
this system under a new class of controls consisting of the piecewise constant
stochastic processes. For the implementation of these optimal controls we
need only the measured values of the states at discrete time instances. The
gain matrices of the optimal control are computed based on the solution of a
matrix backward differential equation with finite jumps of Riccati type. We
also analyze the dependence of the value of the optimal performance with
respect to the length of the sampling period.

2 The problem formulation

2.1 A short discussion on the minimization of the final value
of an output

Let us consider the controlled system with the state space representation
by:

dx(t) = [A0 x(t) +B0 u(t)] dt+ [A1 x(t) +B1 u(t)] dw(t)

x(0) = x0

z(t) = C x(t) ,

(1)

t ≥ 0, where z(t) ∈ RnZ is the controlled output, x(t) ∈ Rn is the state vec-
tor, u(t) ∈ Rm contains the control parameters at instant time t; {w(t)}t≥0
is an one dimensional standard Wiener process (Brownian motion) on a
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given probability space (Ω,F ,P), i.e. w(0) = 0 and for t > 0, E[w(t)] = 0
and E[(w(t)− w(0))2] = t− s for all t ≥ s ≥ 0.

In (1), (Ak, Bk) ∈ Rn×n×Rn×m, k = 0, 1 are constant matrices. Through-
out this work E[.] stands for the mathematical expectation.

The admissible initial state x0 is an n-dimensional random vector with
the mean E[x0] = x̄0 and covariance E[x0x

T
0 ] = X0. We assume also that

the initial state x0 is independent of the σ-algebras Ft, t ≥ 0, where Ft =
σ[w(s), 0 ≤ s ≤ t]. We set F̃t = σ[x0, w(s), 0 ≤ s ≤ t]. First we consider a
class of the admissible controls Uadm that consists of all stochastic processes
u : [0, τ ] × Ω → Rm with the property that for each t ∈ [0, τ ], u(t) is F̃t-
measurable and E[|u(t)|2] <∞. Here τ > 0 is fixed.

The optimization problem which we want to solve ask for the minimiza-
tion of the cost functional J (u) := E[|Cxu(τ)|2] over the class of the admis-
sible controls Uadm. Here xu(.) is the solution of the system (1) determined
by the input xu(.) ∈ Uadm.

Let R(.) be the solution of the problem with given final value described
by the following Riccati type differential equation:

−Ṙ(t) = AT
0R(t) +R(t)A0 +AT

1R(t)A1

−[R(t)B0 +AT
1R(t)B1] [BT

1 R(t)B1]
† [BT

0 R(t) +BT
1 R(t)A1]

R(τ) = CTC .

(2)

As usually the superscript † denotes the pseudo-inverse of a matrix, [9].
Let us assume that the problem with given final values (2) has a positive

semidefinite solution R(t) satisfying the additional condition:

[Im −BT
1 R(t)B1(B

T
1 R(t)B1)

†][BT
0 R(t) +BT

1 R(t)A1] = 0, t ∈ [0, τ ] . (3)

Applying Itô formula to the function xTR(t)x one obtains that if (3) is
satisfied, then the control

ũ(t) = −(BT
1 R(t)B1)

†[BT
0 R(t) +BT

1 R(t)A1]x(t)

achieves the minimal value of the performance criterion J (u) with respect
to the class of admissible controls Uadm. So, the optimal control problem
asking for the minimization of the final value of the mean square of the
output z(t) in the class of admissible controls Uadm may be solved under
the restrictive condition (3) which have to be satisfied by the solution of the
Riccati equation (2).

In this work, we show that a change of the class of admissible controls
allows us to solve the problem of minimization of the final value of the output
z(t) without any additional condition like (3). The new class of admissible
controls will be described in the next subsection.
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2.2 The minimization of the final value of an output by piece-
wise constant controls

Now we consider a new class of admissible controls Uadm consisting of the
piecewise constant stochastic processes. More precisely, the set Uadm con-
tains all stochastic processes u : [0, τ ]× Ω→ Rm with the property:

u(t) = uk , kh ≤ t < (k + 1)h , k = 0, 1, . . . , N − 1 , (4)

where uk are m-dimensional random vectors, which are F̃kh-measurable and
E[|uk|2] <∞.

In (4), h > 0 and b > 0are such that b = Nh,N ≥ 1 being a natural
number. We consider the performance criterion:

J(u) = E[|zu(Nh)|2] , (5)

zu(t) = C xu(t) , where, as before xu(t) is the solution of the problem with
given initial value (1) determined by the control u. The optimal control
problem, which we want to solve, can be stated as follows:

OPTIMIZATION PROBLEM:
For a given admissible initial state x0 find an admissible control

uopt with the property that

J(uopt) = min
u∈Uadm

J(u) . (6)

2.3 An auxiliary control problem

In this work, we shall derive explicit functional of the optimal control uopt.
To this end we shall transform the optimization problem obtained above (
in (6)) into a new optimal control problem described by a controlled system
with finite jumps. Plugging (4) in (1) one obtains:

dx(t) = [A0 x(t) +B0 uk] dt+ [A1 x(t) +B1 uk] dw(t)

kh ≤ t ≤ (k + 1)h, k = 0, 1, . . . , N − 1

x(0) = x0 .

(7)

This system can be written in the form of a system of stochastic differential
equations with finite jumps:

dξ(t) = A0 ξ(t) dt+A1 ξ(t) dw(t)

kh ≤ t ≤ (k + 1)h,

ξ(kh+) = Adξ(kh) + Bduk , k = 0, 1, . . . , N − 1

ξ(0) = ξ0 =
(
xT0 uT0

)T
,

(8)
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where ξ(t) =
(
xT (t) uT (t)

)T ∈ Rn+m,

Ak =

(
Ak Bk

0 0

)
∈ R(n+m)×(n+m) , k = 0, 1,

Ad =

(
In 0

0 0

)
∈ R(n+m)×(n+m) ,

Bd =

(
0

Im

)
∈ R(n+m)×(m) .

(9)

The class of Ud
adm of admissible controls consists of all finite sequences

of m-dimensional random vectors u = {u0, u1, . . . , uN−1}, where uk is F̃kh-
measurable and and E[|uk|2] <∞. Employing (4) we obtain that there exists
a one to one correspondence between Uadm and Ud

adm. Applying Theorem
5.2.1 from [8] on each interval [kh, (k + 1)h], we deduce that for each u ∈
Ud
adm the stochastic differential equation with finite jumps (8) has a unique

solution ξu(.) with the properties:

• ξu(t) is F̃t-measurable for every t ∈ [0, Nh],

• ξu(t) is left continuous for every t ∈ [0, Nh],

• ξu(t) satisfies the initial condition ξu(0) = ξ0.

We associate the performance criterion

Jd(u) = E[|C ξu(Nh)|2] , (10)

where C = (C 0) ∈ RnZ×(n+m) . One obtains that

inf
u∈Uadm

J(u) = inf
u∈Ud

adm

Jd(u) .

Hence, in order to find the control uopt that solves (6) it is sufficient to
find u ∈ Ud

adm that satisfies

Jd(ũ) = minu∈Ud
adm

Jd(u) , , (11)

The solution of the optimization problem (11) will be derived in the next
section.
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3 The solution of the auxiliary optimal control
problem

In the developments in this section we need the following extended version
of the Schur Lemma.

Lemma 1 [generalized Schur Lemma [1, 10]] Let (U, V,W ) be the given
matrices with real entries with compatible dimension such that U = UT ,W =
W T . Then the following are equivalent:

(i)

(
U V

V T W

)
≥ 0 ,

(ii) W ≥ 0 , U − VW †V T ≥ 0, and (I −WW †)V T = 0 .

Let us consider the backward differential equation with finite jumps of
Riccati type on the space Sn+m:

−Ṗ (t) = AT
0 P (t) + P (t)A0 +AT

1 P (t)A1, kh ≤ t < (k + 1)h ,

P (kh−) = AT
d P (kh)Ad

−AT
d P (kh)Bd(BTd P (kh)Bd)†BTd P (kh)Ad

k = 0, 1, . . . , N − 1

P (Nh−) = CTC .

(12)

Throughout the work Sd stands for the linear space of d× d symmetric
matrices.

Proposition 1 The problem with given final value (12) has a unique solu-
tion P̃ : [0, Nh]→ Sn+m having the properties:

(i) P̃ (t) is right continuous and positive semidefinite for all t ∈ [0, Nh];
(ii)

[Im − BTd P̃ (kh)Bd(BTd P̃ (kh)Bd)†BTd P̃ (kh)Ad = 0 , (13)

for 0 ≤ k ≤ N − 1.

Proof: Let L : Sn+m → Sn+m be the linear operator defined by

L[X] = AT
0 X +X A0 +AT

1 X A1 .

Let eLt be defined by

eLt[X] =

∞∑
j=0

tj

j !
Lj [X] , (14)
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for all t ≥ 0, X ∈ Sn+m. applying Corollary 2.2.6 from [3] we deduce that

eLt[X] ≥ 0 , t ≥ 0, if X ≥ 0 . (15)

If t ∈ [(N − 1)h,Nh] we obtain from the first equation of (12) that the
solution P̃ (.) is well defined and has the representation:

P̃ (t) = eL(Nh−t)[CTC] .

Employing (14) we may infer that P̃ (t) ≥ 0 for all (N − 1)h ≤ t ≤ Nh.

Let

(
P̃11(t) P̃12(t)

P̃ T
12(t) P̃22(t)

)
be the partition of P̃ (t) such that P̃11(t) ∈ Sn and

P̃22(t) ∈ Sm. By direct calculations one obtains via (9) that

AT
d P̃ ((N − 1)h)Ad −AT

d P̃ ((N − 1)h)Bd
× (BTd P̃ ((N − 1)h)Bd)† BTd P̃ ((N − 1)h)Ad

=

(
P̃11((N − 1)h)− P̃12((N − 1)h) (P̃22((N − 1)h))† P̃ T

12((N − 1)h) 0

0 0

)
(16)

Invoking the implication (i) → (ii) from Lemma 1, in the case of the
matrix P̃ ((N − 1)h) we obtain that

P̃11((N − 1)h)− P̃12((N − 1)h) (P̃22((N − 1)h))† P̃ T
12((N − 1)h) ≥ 0 (17)

and (Im − P̃22((N − 1)h)(P̃22((N − 1)h))†) (P̃ T
12((N − 1)h) = 0 .

The second equation of (12) written for k = N − 1 together with (16)
and (17) yield

P̃ ((N − 1)h−) ≥ 0 .

thus, we obtain via (15) that P̃ (t) = eL((N−1)h−t)[P̃ ((N − 1)h−)] ≥ 0 , t ∈
[(N − 2)h, (N − 1)h] .

Let us assume that for a k ≤ N − 1 we obtained that P̃ ((k+ 1)h−) ≥ 0.
Then, based on (15) we get

P̃ (t) = eL((k+1)h−t)[P̃ ((k + 1)h−)] ≥ 0 , (18)

t ∈ [kh, (k + 1)h]. Further on, invoking (9) we obtain that

AT
d P̃ (kh)Ad −AT

d P̃ (kh)Bd
× (BTd P̃ (kh)Bd)† BTd P̃ (kh)Ad

=

(
P̃11(kh)− P̃12(kh) (P̃22(kh))† P̃ T

12(kh) 0

0 0

)
.

(19)
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On the other hand, the implication (i) → (ii) of Lemma 1 applied in the
case of the matrix P̃ (kh) ≥ 0, yields:

P̃11(kh)− P̃12(kh) (P̃22(kh))† P̃ T
12(kh) ≥ 0 (20)

and

(Im − P̃22(kh) (P̃22(kh))† ) P̃ T
12(kh) = 0 . (21)

The second equation of (12) together with (19) and (20) lead to P̃ (kh−) ≥ 0 .
Thus, we may continue obtaining that (18) holds for every k = 0, 1, . . . , N −
1. So, we have shown that P̃ (t) is well defined and it is positive semidefinite
for any t ∈ [0, Nh].

In the same time, one obtains inductively, that (21) is true for any k =
0, 1, . . . , N − 1. By direct calculations one sees that (21) is just (13). Thus,
the proof is complete.

The main result of this section is inclosed in the next theorem. In order
to simplify the statement of this theorem we are introducing the notations:
ũKϕ = ( ũKϕ(0) ũKϕ(1) . . . ũKϕ(N − 1), where

ũKϕ(k) = FK(k)ξ̃(kh) + [Im − BTd P̃ (kh)Bd (BTd P̃ (kh)Bd)†]ϕ(k) , (22)

where
FK(k) = −(BTd P̃ (kh)Bd)† BTd P̃ (kh)Ad

−[Im − BTd P̃ (kh)Bd (BTd P̃ (kh)Bd)†]K(k) ,
(23)

K(k) ∈ Rm×(n+m), ϕ(k) ∈ Rm are arbitrary and P̃ (kh) are the values of the
solution P̃ (t) of the problem with given final value (12).

In (22), ξ̃(kh) are the values of the solution with given initial values
obtained when ũkϕ(h) is plugged in (8), i.e.

dξ(t) = A0 ξ(t) dt+A1 ξ(t) dw(t), kh ≤ t ≤ (k + 1)h,

ξ(kh+) = (Ad + BdFK(k))ξ(kh)

+Bd
[
Im − Bd P̃ (kh)Bd (Bd P̃ (kh)Bd)†

]
ϕ(k) ,

(24)

k = 0, 1, . . . , N − 1, ξ(0) = ξ0 .

Theorem 1 Given an initial state ξ0, any control ũKϕ of type (22)-(23)
achieves the minimum of the cost function (10) with respect to the class of
admissible controls Ud

adm. The minimal value of the performance criteria is

Jd(ũKϕ) = E[ξT0 P̃ (0−) ξ0] . (25)
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Proof: Applying the Itô formula to the functions ξT P̃ (t)ξ of the form
[s1k, s

2
k] ⊂ [kh, (k + 1)h] and letting s1k → kh and s2k → (k + 1)h we obtain

via the first equation of (12) that

E[ξTu ((k + 1)h)P̃ ((k + 1)h−)ξu((k + 1)h)]− E[ξTu (kh+)P̃ (kh)ξu(kh+)]

= E
[∫ (k+1)h

kh ξTu (t)
(

d
dt P̃ (t) +AT

0 P̃ (t) + P̃ (t)A0 +AT
1 P̃ (t)A1

)
ξu(t) dt

]
for all k = 0, 1, . . . , N − 1 and any u 6=(u0, u1, . . . , uN−1) ∈ Ud

adm.

Employing the second equation of (8) we further obtain

E[ξTu ((k + 1)h)P̃ ((k + 1)h−)ξu((k + 1)h)]

= E[ξTu (kh)AT
d P̃ (kh)Adξu(kh)] + E[ξTu (kh)AT

d P̃ (kh)Bduk
+uTk BTd P̃ (kh)Adξu(kh) + uTk BTd P̃ (kh)Bduk] .

(26)

Let

ûKϕ(k) = [Im − BTd P̃ (kh)Bd (BTd P̃ (kh)Bd)†][K(k)ξu(kh) + ϕ(k)] (27)

where K(k) ∈ Rm×(n+m), ϕ(k) ∈ Rm are arbitrary but fixed.

From (13) and (27) we deduce that

AT
d P̃ (kh)Bd ûKϕ(k) = 0 . (28)

On the other hand, invoking some properties of the pseudo-inverse of a
positive semidefinite matrix we may infer that

BTd P̃ (kh)Bd ûKϕ(k) = 0 , 0 ≤ k ≤ N − 1. (29)

Further on, (26), (28) and (29) yield:

E[ξTu ((k + 1)h)P̃ ((k + 1)h−)ξu((k + 1)h)]

= E[ξTu (kh)AT
d P̃ (kh)Adξu(kh)] + E[ξTu (kh)AT

d P̃ (kh)Bd(uk + ûKϕ(k))

+(uk + ûKϕ(k))T BTd P̃ (kh)Adξu(kh)

+(uk + ûKϕ(k))T BTd P̃ (kh)Bd(uk + ûKϕ(k))] .
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Using the second equation in (12) we get:

E[ξTu ((k + 1)h)P̃ ((k + 1)h−)ξu((k + 1)h)]

−E[ξTu (kh)P̃ (kh−)ξu(kh)]

= E[ξTu (kh)AT
d P̃ (kh)Bd(BTd P̃ (kh)Bd)†BTd P̃ (kh)Adξu(kh)

+ξTu (kh)AT
d P̃ (kh)Bd(uk + ûKϕ(k))

+(uk + ûKϕ(k))T BTd P̃ (kh)Adξu(kh)

+(uk + ûKϕ(k))T BTd P̃ (kh)Bd(uk + ûKϕ(k))]

= E[(ub + (BTd P̃ (kh)Bd)† BTd P̃ (kh)Adξu(kh) + ûKϕ(k))T

×BTd P̃ (kh)Bd
×(ub + (BTd P̃ (kh)Bd)† BTd P̃ (kh)Adξu(kh) + ûKϕ(k))] .

(30)

To obtain the last equality we have used (13) together with the equality

(BTd P̃ (kh)Bd)† BTd P̃ (kh)Bd (BTd P̃ (kh)Bd)† = (BTd P̃ (kh)Bd)†

which is obtained directly from the definition of the pseudo-unverse. Sum-
ming up in (30) for k = 0 to N − 1 and taking into account that P̃ (Nh−) =
CT C, we obtain via (10) that

Jd(u) = E[ξTu (0)P̃ (0−)ξu(0)]

+
∑N−1

k=0 E[(ub + (BTd P̃ (kh)Bd)† BTd P̃ (kh)Adξu(kh) + ûKϕ(k))T

×BTd P̃ (kh)Bd
×(ub + (BTd P̃ (kh)Bd)† BTd P̃ (kh)Adξu(kh) + ûKϕ(k))] .

(31)

for any u = (u0, u1, . . . , uN−1) ∈ Ud
adm.

From (22), (23) and (27) together the uniqueness of the solution of the
problem(24) one sees that

(BTd P̃ (kh)Bd)† + BTd P̃ (kh)Adξu(kh)− ûKϕ(k)

reduces to ũKϕ(k) when in (31) u is replaced by ũKϕ. Thus, we obtain

Jd(ũKϕ) = E[ξT0 P̃ (0−)ξ0] ≤ Jd(u) ,

for all u ∈ Ud
adm. Thus, the proof ends.

Remark 1 From Theorem 1 one sees that the optimal control problem de-
scribed in (11) has an infinite number of optimal controls.
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3.1 Several procedural issues

To compute any of the optimal controls described in (22)-(23) we need the
values P̃ (kh), k = 0, 1, . . . , N − 1 of the solution P̃ (.) of the problem with
given fiscal values (12). To compute the values of P̃ (kh) let us notice that
(18) written for t = kh yields

P̃ (kh) = eLh[P̃ ((k + 1)h−)] . (32)

Using the second equation of (12) we obtain via (32) the following discrete-
time backward equation:

P̃ (kh−) = AT
d e
Lh[P̃ ((k + 1)h−)]Ad −AT

d e
Lh[P̃ ((k + 1)h−)]Bd

×(BTd eLh[P̃ ((k + 1)h−)]Bd)†BTd eLh[P̃ ((k + 1)h−)]Ad .
(33)

Hence, the sequence of the values P̃ (kh−), k = N−1, N−2, . . . , 0 one obtains
recursively using (33) together with P̃ (kh−) = CT C. Finally, the values of
P̃ (kh) involved in (22)-(23) are obtained from (32). The values of eLh[.]
involved in (32) and (33) can be computed by truncation of (14), namely,

eLh[X] =

p∑
j=0

hj

j !
Lj [X] . (34)

where p ≥ 1 is sufficiently large such that

λmax{Lp+1[X]} hp+1

(p+ 1)!
< tol ,

where tol is a small positive number. Let us recall that Lj [X] are obtained
from

Lj [X] = AT
0 Lj−1[X] + Lj [X]A0 +AT

1 Lj−1[X]A1 , (35)

with L0[X] = X.

Remark 2 In the special case when in (1) we have A1 = 0, B1 = 0, then

eLh[X] = eA
T
0 hX eA0h. In this case (33) becomes

P̃ (kh−) = AT P̃ ((k + 1)h−)A

−AT P̃ ((k + 1)h−)B (BT P̃ ((k + 1)h−)B)†BT P̃ ((k + 1)h−)]A ,

for k = N − 1, N − 2, . . . , 0, P̃ (Nh−) = CT C, where

A = eA0hAd , B = eA0hBd .
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The values P̃ (kh) involved in the computation of the gain matrices of the
optimal controls are obtained now from P̃ (kh) = (eA0h)T P̃ ((k+ 1)h−) eA0h.

A reliable approximation of eA0h is obtained computing
∑p

j=0
hj

j !A
j
0, where

p ≥ 1 is sufficiently large.

Let us consider again the partition : P̃ (t) =

(
P̃11(t) P̃12(t)

P̃ T
12(t) P̃22(t)

)
of the

solution of the problem with given final value (12) such that P̃11(t) ∈ Sn
and P̃22(t) ∈ Sm. By direct calculations one obtains the following partition
of (12):

− d
dt P̃11(t) = AT

0 P̃11(t) + P̃11(t)A0 +A1P̃11(t)A1

− d
dt P̃12(t) = AT

0 P̃12(t) + P̃11(t)B0 +A1P̃11(t)B1

− d
dt P̃22(t) = BT

0 P̃12(t) + P̃ T
12(t)B0 +BT

1 P̃11(t)B1

kh ≤ t < (k + 1)h ,

P̃11(kh
−) = P̃11(kh)− P̃12(kh)(P̃22(kh))†P̃ T

12(kh)

P̃12(kh
−) = 0 , P̃22(kh

−) = 0 , k = 0, 1, . . . , N − 1 ,

P̃11(Nh
−) = CT C , P̃12(Nh

−) = 0 , P̃22(Nh
−) = 0 .

(36)

The integration of the equation (36) may be used as an alternative pro-
cedure to the one described by (32)-(35) to compute P̃ (kh), 0 ≤ k ≤ N − 1.

4 The solution of the optimization problem by
piecewise constant controls

Let us consider the controls ũKϕ = ( ũKϕ(0), ũKϕ(1), . . . , ũKϕ(N − 1) of

type (22)-(23) in the special case K(k) = (K̂(k) = 0), where K̂(k) ∈ Rm×n

is an arbitrary matrix. By direct calculation, employing the structure given
in (9) for the matrices Ad and Bd, we deduce that in the special case we
have

ũKϕ(k) = ΨK̂(k)x̃(kh) + [Im − P̃22(kh) P̃ †22(kh)]ϕ(k) , (37)

where

ΨK̂(k) = −P̃ †22(kh) P̃ T
12(kh) + [Im − P̃22(kh) P̃ †22(kh)]K̂(k) , (38)

and (P̃22(kh) , P̃12(kh)) ∈ Rm×m × Rn×m being the block component of
P̃ (kh). In (37), x̃(kh) are the values at the instance time kh of the first



On the minimization of the mean square value 223

n-components of the solution ξ̃(kh) of the problem with given initial values
(24).

Since the controls (37)-(38) depend upon K̂(k) ∈ Rm×n and ϕ(k) ∈ Rm

we shall write in the following, ũK̂ϕ(k) and ũK̂ϕ instead of ũKϕ(k) and ũKϕ

all the time when we refer to (37) and (38).

Consider now an arbitrary u(t) ∈ Uadm. We set u = (u0, u1, . . . , uN−1),
where uk are the values involved in the definition of u(t) via (4). It is
obvious that u ∈ Ud

adm. Conversely, if u = (u0, u1, . . . , uN−1) is an element
of the set Ud

adm, we can associate an unique piecewise constant admissible
control (via (4)). In this way, we have shown that there exists an one to one
correspondence between the classes of admissible controls Uadm and Ud

adm.
Now we are in position to state and proof the main result of this work.

Theorem 2 Given an admissible initial state x0, the minimum of the cost
functional (5) in the class of admissible controls Uadm is achieved by the
piecewise constant controls

uopt(t) = ΦK̂(k)x̃(kh) + [Im − P̃22(kh) P̃ †22(kh)]ϕ(k) , (39)

kh ≤ t < (k + 1)h , k = 0, 1, . . . , N − 1, where ΦK̂(k) is described in (38),
and x̃(kh) being the solution of the closed-loop system obtained plugging (39)
in (1), K̂ ∈ Rm×n and ϕ(k) ∈ Rm being arbitrary. The minimal value of
the performance criterion (5) is given by

J(uopt) = Tr[P̃11(0
−)X0] . (40)

Proof: Let u(.) ∈ Uadm be arbitrary and let u = (u0, u1, . . . , uN−1),
where uk are the constant values of u(.) Invoking (4), (5), (7), (8), (10) and
Theorem 1, we obtain

J(u) = Jd(u) ≥ Jd(ũK̂ϕ) = J(uopt) .

This confirms the optimality of the controls of type (39). The optimal value
of the performance (40) one obtains from (25) because P̃12(0

−) = 0, and
P̃22(0

−) = 0. The proof ends.

Remark 3 a) From Theorem 2 one sees that the optimal control problem
described by the cost functional (5) in the class of piecewise constant controls
of type (4) has an infinite number of optimal controls.

The family of the optimal controls is parameterized by the sequences
{K̂(k)}0≤k≤(n−1) ⊂ Rm×n, {ϕ(k)}0≤k≤(n−1) ⊂ Rm .
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In the special case K̂(k) = 0, ϕ(k) = 0, 0 ≤ k ≤ N − 1 (39) reduces to

uopt(t) = F̃ (k)x̃(kh) , kh < t ≤ (k + 1)h , (41)

k = 0, 1, . . . , 2N − 1, where

F̃ (k) = −P̃ †22(kh)P̃ T
12(kh) , (42)

and x(kh) are the values at instant time kh of the solution of the problem
with given initial values:

dx(t) = [A0x(t) +B0F̃ (k)x(kh)]dt+ [A1x(t) +B1F̃ (k)x(kh)]dw(t) (43)

for kh < t ≤ (k + 1)h. k = 0, 1, . . . , N − 1, x(0) = x0 .
b) For implementation of an optimal control (37)- (38) or (41)- (42),

respectively, we need to measure the state x(kh) at discrete time instances
tk = kh, 0 ≤ k ≤ N − 1. For these reasons h > 0 is named the sampling
period.

5 The dependence of the optimal performance with
respect to the sampling period

The decreasing of the length of the sampling period, could provide an im-
proving of the minimal value achieved by the performance index (5).

In order to illustrate this fact let us assume that in (4) h is replaced by
h/2. Hence, the admissible controls are of the form:

u(t) = uk , k
h

2
≤ t ≤ (k + 1)

h

2
, k = 0, 1, . . . , 2N − 1 . (44)

The problem with given final values (12) is replaced by

−Ṗ (t) = AT
0 P (t) + P (t)A0 +AT

1 P (t)A1, k
h
2 ≤ t < (k + 1)h2 ,

P (k h
2

−
) = AT

d P (k h
2 )Ad

−AT
d P (k h

2 )Bd(BTd P (k h
2 )Bd)†BTd P (k h

2 )Ad

k = 0, 1, . . . , N − 1

P (2N h
2 ) = CTC .

(45)

Reasoning as in the proof of Proposition 1 one can show that the problem
with given final values (45) has a unique solution P̂ (.) defined on the whole
interval [0, Nh], which is right continuous and positive semidefinite in each
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t ∈ [0, Nh]. Applying Theorem 1 in the case when the length of the sampling
period is h

2 instead of h, we obtain that the minimal value of the cost (5) in
the class of admissible controls of type (44) is achieved by the control

ûopt(t) = F̂ (k)x̂(k
h

2
) , k

h

2
≤ t ≤ (k + 1)

h

2
, k = 0, 1, . . . , 2N − 1 , (46)

where

F̂ (k) = −P̂ †22(k
h

2
)P̂ T

12(k
h

2
) , (47)

where(P̂12(k
h
2 ), P̂22(k

h
2 )) ∈ Rn×m × Rm×m being the block components of

P̂ (k h
2 ). The value of the performance (5) achieved by the control (46) is

given by
J(ûopt) = Tr[P̂11(0

−)X0].

Now, we have

Proposition 2 If P̃ (.) and P̂ (.) are the unique solutions of (12) and (45),
respectively, then we have 0 ≤ P̂ (t) ≤ P̃ (t) for all t ∈ [0, Nh] and 0 ≤
P̂ (0−) ≤ P̃ (0−) .

The proof may be done using the positivity properties of the operator
eLt[.] together with Lemma 1 from above and Corollary 4.5 from [4].

Corollary 1 We have J(ûopt) ≤ J(uopt).

So, decreasing the length of the sampling period one obtains an improv-
ing of the value of the optimal performance. However, the implementation
of the control (46)-(47) needs a greater number of measurements.

6 Numerical experiments

We execute numerical simulation to compute uopt(t) via (41).
Example 1. A deterministic case. Consider again (43):

dx(t) = [A0x(t) +B0F̃ (k)x(kh)]dt+ [A1x(t) +B1F̃ (k)x(kh)]dw(t) ,

kh < t ≤ (k + 1)h. k = 0, 1, . . . , N − 1, x(0) = x0

in the special case of A1 = 0, B1 = 0. One may compute the values of the
solutions x̃(kh), k = 0, 1, . . . , N as follows. To this end, the obtained version
of (43) is

dx(t) = [A0x(t) +B0F̃ (k)x(kh)]dt .
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It is rewritten as:

x((k + 1)h) = [eA0h +

∫ h

0
eA0sdsB0F̃ (k)]x(kh)

k = 0, 1, . . . , N − 1, where

eA0h = In +A0h+A2
0h

2/2 + . . .

and ∫ h

0
eA0sds = hIn + h2/2A0 + h3/6A2

0 + . . .

We take A0 = np.matrix([[−1.5, 0.17], [0.07,−1.42]]), and C = np.matrix
([[0.5, 0.004], [0.01, 0.42]]) and h = 0.1. We compute

eA0h ∼

(
0.8608 0.0147

0.0060 0.8677

)
,

∫ h

0
eA0sds ∼

(
0.0861 0.0015

0.0006 0.0868

)
.

Further on, we take B0 = np.matrix([[1.5, 0.7], [0.3, 0.4]]) , and x0 =
np.matrix([[0.02], [0.035]]), and compute F̃ (k), k = 0, 1, . . . , N − 1 via (42).
Here, the notation ”np.matrix” is used to define the corresponding matrices
in Python. Experiments in this example are executed in Python.

We compute for h = 0.1 and N = 10(Nh = τ = 1):

x(0) =

(
0.02

0.035

)
, x(h) =

(
0.124

0.265

)
, x(2h) =

(
0.009

0.203

)
, . . .

x(8h) =

(
−0.004

0.043

)
, x(9h) =

(
−0.003

0.033

)
, x(10h) =

(
−0.002

0.025

)
.

In addition, we compute for h = 0.05 and N = 20(Nh = τ = 1)

x(0) =

(
0.02

0.035

)
, x(h) =

(
0.2685

0.3017

)
, x(2h) =

(
0.0819

0.2622

)
, . . .

x(18h) =

(
−0.0029

0.0306

)
, x(19h) =

(
−0.0026

0.0268

)
, x(20h) =

(
−0.0023

0.0234

)
.

Moreover, we apply (41) to find uopt(t), kh < t ≤ (k + 1)h , k =
0, 1, . . . , N − 1.

Example 2. A stochastic case with a zero matrix A1.
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The matrices for system (1) are

A0 =[1.5, 0.17; 0.07, -1.42]; ,

A1=[0.0, 0; 0, 0.0]; ,

B0 =[1.5, 0.7; 0.3, 0.4]; ,

B1=[0.2,0.04; 0.02, 0.01]; , and

C=[0.5, 0.004; 0.01, 0.42]; .

Note that n = 2 and x(t) = (x1(t) x2(t))
T . Here we use the Matlab

description.

In this example we approximate the deterministic part as in Example 1.
For the stochastic part we use Matlab procedures sde and simByEuler.

Thus we obtain the values of x(kh), k = 0, 1, . . . , N, x(0) = x0[0.04; 0.02]
and h = 0.1, (Nh = τ = 1):

x(0) =

(
0.04

0.02

)
, x(h) =

(
0.0339

0.0141

)
, x(2h) =

(
0.0286

0.0081

)
, . . .

x(8h) =

(
0.0057

−0.0514

)
, x(9h) =

(
0.0026

−0.0715

)
, x(10h) =

(
−0.0003

−0.0978

)
.

Example 3. A stochastic case.

The matrices for system (1) are

A0=[7.5, 9.7; -0.35, 7.0]; ,

A1=[3.5, 7.0; 1.4, 4.5]; ,

B0 =[1.5, 0.7; 0.3, 0.4]; ,

B1=[0.2,0.04; 0.02, 0.01]; , and

C=[0.5, 0.004; 0.01, 0.42]; .

We take x(0) = x0 = [0.04; 0.02] and h = 0.1, (Nh = τ = 1).

We approximate the values of x(kh), k = 0, 1, . . . , N , applying the Mat-
lab procedures sde and simByEuler.

x(0) =

(
0.04

0.02

)
, x(h) =

(
−0.2469

0.1136

)
, x(2h) =

(
−0.5902

0.2240

)
, . . .

x(8h) =

(
−3.4765

1.1144

)
, x(9h) =

(
−3.8312

1.2231

)
, x(10h) =

(
−3.7486

−1.3059

)
.
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7 Conclusions

In this paper, the problem of minimization of the mean square of the value
of the final instance time of a signal generated by a linear controlled system
subject to multiplicative white noise perturbations was solved.

The class of admissible controls consists of all piecewise constant stochas-
tic processes that are adapted to the filtration generated by the Brownian
motion affecting the considered controlled system. We have shown that the
considered optimal control problem is well possed, but it has an infinite
number of optimal controls.

Explicit formulae of the optimal controls were obtained. These formulae
are in the affine state feedback form. The gain matrices of the optimal
controls are computed based on the unique solution of a backward matrix
differential equation with finite jumps.

It remains as an open problem the minimization of the variance of the
final value of an output of a linear stochastic system.

Another problem of interest could be the problem of minimization of
the mean square of the deviation of the final value of the output of a given
system from a target value.
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