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Abstract

In this paper, we introduce a new class of nonlinear multi-valued
mappings which is called a nonspreading-type mapping in Hilbert spaces,
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mapping. Furthermore, we prove weak and strong convergence theo-
rems for a finite family of nonspreading-type multi-valued mappings
in Hilbert spaces. As applications, we give examples and numerical
results to illustrate our iteration and results.

MSC: 47H04; 47H10; 54H25.

keywords: Fixed point; nonspreading-type multi-valued mapping; weak
convergence; strong convergence; Opial’s condition.

∗Accepted for publication in revised form on August 30, 2018
†c-wchp007@hotmail.com School of Science, University of Phayao Phayao, Thailand;

This paper was supported by the Thailand Research Fund under the project MRG6080105
‡Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai,

Thailand
§Department of Mathematics Education and the RINS, Gyeongsang National Univer-

sity, Jinju, Republic of Korea

402



Fixed points for nonspreading-type multi-valued mappings 403

1 Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm
‖·‖ and C be a nonempty convex subset of H. Let {xn} be a sequence in H.
Now, we denote the weak convergence of {xn} to a point x ∈ H by xn ⇀ x
and the strong convergence of {xn} to a point x ∈ H by xn → x.

For a single-valued mapping T : C → H, I−T is said to be demiclosed at
y ∈ C if {xn} ⊂ C such that xn ⇀ x and (I−T )xn → y imply (I−T )x = y,
where I denotes the identity mapping on H.

One of the fundamental and celebrated results in the theory of nonexpan-
sive single-valued mappings is Browder’s demiclosedness principle [5]. The
principle is also valid in a space satisfying Opial’s condition. It has been
known that the demiclosedness principle plays a key role in studying the
asymptotic and ergodic behaviour of a nonexpansive single-valued mapping
(see for example [11, 16, 24, 31, 43]).

Since 1965, fixed point theorems and the existence of fixed points of
single-valued mappings have been intensively studied and considered by
many authors (see, for examples, [1, 4, 13, 15, 19, 40]).

Recall that a single-valued mapping T : C → C is said to be nonexpan-
sive if

‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ C.
On the other hand, in 2008, Kohsaka and Takahashi [21, 22] introduced

class of mappings, which is called the class of nonspreading mappings.

Let H be a Hilbert space and C be nonempty closed convex subset of
H. Then a mapping T : C → C is said to be nonspreading if

2‖Tx− Ty‖2 ≤ ‖x− Ty‖2 + ‖y − Tx‖2

for all x, y ∈ C. Recently, Iemoto and Takahashi [17] showed that T : C → C
is nonspreading if and only if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 2〈x− Ty, y − Ty〉

for all x, y ∈ C. Further, Takahashi [38] defined a class of nonlinear map-
pings, which is said to be hybrid, i.e.,

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 〈x− Tx, y − Ty〉

for all x, y ∈ C. Recently, Aoyama et al. [2] introduced a new class of
nonlinear mappings in a Hilbert space containing the class of nonexpansive
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mappings, nonspreding mappings and hybrid mappings, i.e.,

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 2λ〈x− Tx, y − Ty〉

for all x, y ∈ C. This mapping is called a λ-hybrid mapping. They proved
obtained necessary and sufficient conditions for the existence of fixed points
of λ-hybrid mappings in Hilber spaces. For some more results on some new
nonlinear mappings, refer to [27, 34, 35, 36].

A subset C ⊂ H is said to be proximinal if, for all x ∈ H, there exists
y ∈ C such that

‖x− y‖ = d(x,C) = inf{‖x− z‖ : z ∈ C}.

Let CB(C), K(C) and P (C) denote the families of nonempty closed
bounded subsets, nonempty compact subsets and nonempty proximinal boun-
ded subset of C, respectively. The Hausdorff metric on CB(C) is defined
by

H(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

for all A,B ∈ CB(C), where d(x,B) = infb∈B ‖x − b‖. A multi-valued
mapping T : C → CB(C) is said to be nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖

for all x, y ∈ C. An element p ∈ C is called a fixed point of a single-valued
mapping T : C → C (resp., a multi-valued mapping T : C → CB(C)) if
p = Tp (resp., p ∈ Tp). The fixed points set of T is denoted by F (T ). If
F (T ) 6= ∅ and

H(Tx, Tp) ≤ ‖x− p‖

for all x ∈ C and p ∈ F (T ), then T is said to be quasi-nonexpansive.

Let T : C → CB(H) be a multi-valued mapping. Then I − T is said to
be demiclosed at y ∈ C if {xn} ⊂ C is a sequence such that xn ⇀ x and
xn − zn → y, where zn ∈ Txn, imply x− y ∈ Tx.

Fixed point theory of multi-valued mappings is much more complicated
and difficult than the corresponding theory of single-valued mappings. So
some classical fixed point theorems for single-valued mappings have already
been extended to multi-valued mappings.

In 1968, Markin [26] firstly established the nonexpansive multivalued
convergence results in Hilbert spaces. Banach’s Contraction Principle was
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extended to a multi-valued contraction in 1969 by [28]. In 1974, one break-
through was achieved by Lim using Edelstein’s method of asymptotic centers
[23]. In 1999, Kirk and Massa [20] obtained another important result for the
existence fixed point theorem of nonexpansive multi-valued mappings. In
1999, Sahu [32] obtained the strong convergence theorems of the nonexpan-
sive type and non-self multi-valued mappings in uniformly convex Banach
spaces. In 2001, Xu [44] extended the result of Kirk and Massa [20] to a
nonexpansive multi-valued non-self mapping and obtained the fixed point
theorem. Some fixed point results for nonexpansive multi-valued mappings
can be found in [3, 7, 8, 9, 10, 12, 18, 30, 33, 42] and references therein.

In this paper, we introduce a new multi-valued mapping which is called
a k-nonspreading multi-valued mapping and prove some properties of this
mapping for the existence results. Also, we prove some fixed point theorems
and weak convergence theorems for this mapping under some conditions.
Finally, we give examples with its numerical results to illustrate our main
theorems.

2 Preliminaries and lemmas

In a real Hilbert space H, we have

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H and λ ∈ [0, 1] (see, for instance, [39]). Further, we have

2〈x− y, z − w〉 = ‖x− w‖2 + ‖y − z‖2 − ‖x− z‖2 − ‖y − w‖2

for all x, y, z, w ∈ H (see [17] for more details). It is also known that a
Hilbert space H satisfies Opial’s condition, i.e., for any sequence {xn} with
xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for all y ∈ H with y 6= x.
Let C be a closed and convex subset of H. For all point x ∈ H, there

exists a unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖

for all y ∈ C. PC is called the metric projection of H onto C. We know that
PC is a nonexpansive mapping of H onto C ([14]).
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The following results will be used for the proof of our main results in the
sequel.

Condition(A) Let H be a Hilbert space and C be a subset of H. A multi-
valued mapping T : C → CB(C) is said to satisfy Condition (A) if

‖x− p‖ = d(x, Tp)

for all x ∈ H and p ∈ F (T ).

Remark 1 We see that T satisfies Condition (A) if and only if Tp = {p}
for all p ∈ F (T ). It is known that the best approximation operator PT ,
which is defined by

PTx = {y ∈ Tx : ‖y − x‖ = d(x, Tx)},

also satisfies Condition (A).

Lemma 1 Let H be a real Hilbert space. Then the following results hold:

(1) ‖tx + (1 − t)y‖2 = t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)‖x − y‖2 for all
x, y ∈ H and t ∈ [0, 1].

(2) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉 for all x, y ∈ H.
(3) If {xn}∞n=1 is a sequence in H which converges weakly to z ∈ H, then

we have
lim sup
n→∞

‖xn − y‖2 = lim sup
n→∞

‖xn − z‖2 + ‖z − y‖2

for all y ∈ H.

Lemma 2 [14, 25] Let C be a closed and convex subset of a real Hilbert
space H and PC be the metric projection from H onto C. For any x ∈ H
and z ∈ C, z = PCx if and only if

〈x− z, y − z〉 ≤ 0

for all y ∈ C.

Lemma 3 [41] Let C be a nonempty closed convex subset of a Hilbert space
H, {xn} be a bounded sequence in H and µ be a Banach limit. If g : C → R
is defined by

g(z) = µn‖xn − z‖2

for all z ∈ C, then there exists a unique z0 ∈ C such that

g(z0) = min{g(z) : z ∈ C}.
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Lemma 4 [6] Let H be a real Hilbert space and let xi ∈ H for each i =
1, 2, · · · ,m. For each i = 1, 2, · · · ,m, if αi ∈ (0, 1) with

∑m
i=1 αi = 1, the

following identity holds:∥∥∥∥ m∑
i=1

αixi

∥∥∥∥2 =

m∑
i=1

αi‖xi‖2 −
∑

1≤i<j≤m
αiαj‖xi − xj‖2.

Lemma 5 [37] Let X be a Banach space which satisfies Opial’s condition
and {xn} be a sequence in X. Let u, v ∈ X be such that limn→∞ ‖xn − u‖
and limn→∞ ‖xn − v‖ exist. If {xnk

} and {xmk
} are subsequences of {xn}

which converge weakly to u and v, respectively, then u = v.

3 Main results

Let H be a real Hilbert space and C be a nonempty convex subset of
H. A multi-valued mapping T : C → CB(C) is a k-nonspreading if there
exists k > 0 such that

H(Tx, Ty)2 ≤ k
(
d(Tx, y)2 + d(x, Ty)2

)
for all x, y ∈ C. We say that a multi-valued mapping T : C → CB(C) is a
nonspreading-type if k = 1

2 , i.e.,

2H(Tx, Ty)2 ≤ d(Tx, y)2 + d(x, Ty)2 (1)

for all x, y ∈ C.

It is easy to see that, if T is nonspreading-type, then T is nonspread-
ing in the case of single-valued mappings (see [21, 22]). Moreover, if T is
nonspreading-type and F (T ) 6= ∅, then T is quasi-nonexpansive. Indeed, for
all x ∈ C and p ∈ F (T ), we have

2H(Tx, Tp)2 ≤ d(Tx, p)2 + d(x, Tp)2

≤ H(Tx, Tp)2 + ‖x− p‖2.

Thus it follows that

H(Tx, Tp) ≤ ‖x− p‖. (2)

Now, we give an example of a nonspreading-type multi-valued mapping
which is not a nonexpansive multi-valued mapping.
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Example 1 Consider C = [−3, 3] with the usual norm. Define a multi-
valued mapping T : C → CB(C) by

Tx =

{
{0}, x ∈ [−2, 2];[
− |x|
|x|+1 ,

|x|
|x|+1

]
, x /∈ [−2, 2].

To see that T is nonspreading-type, we observe the following cases:
Case 1: if x, y ∈ [−2, 2], then H(Tx, Tx) = 0.
Case 2: if x ∈ [−2, 2] and y /∈ [−2, 2], then Tx = {0} and

Ty =
[
− |y|
|y|+1 ,

|y|
|y|+1

]
. This implies that

2H(Tx, Ty)2 = 2
( |y|
|y|+ 1

)2
< 2 < y2 ≤ d(Tx, y)2 + d(x, Ty)2.

Case 3: if x, y /∈ [−2, 2], then Tx =
[
− |x|
|x|+1 ,

|x|
|x|+1

]
and

Ty =
[
− |y|
|y|+1 ,

|y|
|y|+1

]
. This implies that

2H(Tx, Ty)2 = 2
( |x|
|x|+ 1

− |y|
|y|+ 1

)2
< 2 < d(Tx, y)2 + d(x, Ty)2.

But T is not nonexpansive since for x = 2 and y = 5
2 , we have Tx = {0}

and Ty =
[
− 5

7 ,
5
7

]
. This implies that

H(Tx, Ty) =
5

7
>

1

2
=
∣∣2− 5

2

∣∣ = ‖x− y‖.

Let C be a nonempty set in a Hilbert space H. We define T (C) =
∪x∈CTx and (ST )x = S(Tx) for all x ∈ C.

Now, we present the following properties of a nonspreading-type multi-
valued mapping.

Lemma 6 Let C be a closed convex subset of a real Hilbert space H. Let
T : C → CB(C) be a nonspreading-type multi-valued mapping with F (T ) 6=
∅. Then F (T ) is closed.

Proof. Let {xn} be a sequence in F (T ) such that xn → x as n→∞. Then
we have

d(x, Tx) ≤ ‖x− xn‖+ d(xn, Tx)

≤ ‖x− xn‖+H(Txn, Tx)

≤ 2‖x− xn‖.

It follows that d(x, Tx) = 0 and hence x ∈ F (T ). This completes the proof.
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Lemma 7 Let C be a closed convex subset of a real Hilbert space H. Let
T : C → CB(C) be a nonspreading-type multi-valued mapping with F (T ) 6=
∅. If T satisfies Condition (A), then F (T ) is convex.

Proof. Let p = tp1 + (1 − t)p2, where p1, p2 ∈ F (T ) and t ∈ (0, 1). Let
z ∈ Tp. It follows from (2) that

‖p− z‖2 = ‖t(z − p1) + (1− t)(z − p2)‖2

= t‖z − p1‖2 + (1− t)‖z − p2‖2 − t(1− t)‖p1 − p2‖2

= td(z, Tp1)
2 + (1− t)d(z, Tp2)

2 − t(1− t)‖p1 − p2‖2

≤ tH(Tp, Tp1)
2 + (1− t)H(Tp, Tp2)

2 − t(1− t)‖p1 − p2‖2

≤ t‖p− p1‖2 + (1− t)‖p− p2‖2 − t(1− t)‖p1 − p2‖2

= t(1− t)2‖p1 − p2‖2 + (1− t)t2‖p1 − p2‖2 − t(1− t)‖p1 − p2‖2

= 0

and hence p = z. Therefore, p ∈ F (T ). This completes the proof.

Lemma 8 Let C be a closed convex subset of a real Hilbert space H. Let
T : C → K(C) be a nonspreading-type multi-valued mapping. If x, y ∈ C
and a ∈ Tx, then there exists b ∈ Ty such that

‖a− b‖2 ≤ H(Tx, Ty)2 ≤ ‖x− y‖2 + 2〈x− a, y − b〉.

Proof. Let x, y ∈ C and a ∈ Tx. From Nadler’s theorem (see [28]), there
exists b ∈ Ty such that

‖a− b‖2 ≤ H(Tx, Ty)2.

It follows that

2H(Tx, Ty)2 ≤ d(Tx, y)2 + d(x, Ty)2

≤ ‖a− y‖2 + ‖x− b‖2

≤ ‖a− x‖2 + 2〈a− x, x− y〉+ ‖x− y‖2 + ‖x− a‖2

+2〈x− a, a− b〉+ ‖a− b‖2

= 2‖a− x‖2 + ‖x− y‖2 + ‖a− b‖2

+2〈a− x, x− a− (y − b)〉
≤ 2‖a− x‖2 + ‖x− y‖2 +H(Tx, Ty)2

+2〈a− x, x− a− (y − b)〉.

This implies that

H(Tx, Ty)2 ≤ ‖x− y‖2 + 2〈x− a, y − b〉.

This completes the proof.
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Lemma 9 Let C be a closed convex subset of a real Hilbert space H. Let
T : C → K(C) be a nonspreading-type multi-valued mapping. Let {xn} be
a sequence in C such that xn ⇀ p and limn→∞ ‖xn − yn‖ = 0 for some
yn ∈ Txn. Then p ∈ Tp.

Proof. Let {xn} be a sequence in C which converges weakly to p and {xn−
yn} converges strongly to 0 for some yn ∈ Txn.

Now, we show that p ∈ F (T ). By Lemma 8, there exists zn ∈ Tp such
that

‖yn − zn‖2 ≤ ‖xn − p‖2 + 2〈xn − yn, p− zn〉.

Since Tp is compact and zn ∈ Tp, there exists {zni} ⊂ {zn} such that
zni → z ∈ Tp. Since {xn} converges weakly, it is bounded. For each x ∈ H,
define a function f : H → [0,∞) by

f(x) := lim sup
i→∞

‖xni − x‖2.

Then, by Lemma 1(3), we obtain

f(x) = lim sup
i→∞

‖xni − p‖2 + ‖p− x‖2

for all x ∈ H. Thus f(x) = f(p) + ‖p− x‖2 for all x ∈ H. It follows that

f(z) = f(p) + ‖p− z‖2. (3)

We observe that

f(z) = lim sup
i→∞

‖xni−z‖2 = lim sup
i→∞

‖xni−yni +yni−z‖2 ≤ lim sup
i→∞

‖yni−z‖2.

This implies that

f(z) ≤ lim sup
i→∞

‖yni − z‖2

= lim sup
i→∞

(
‖yni − zni + zni − z‖

)2
≤ lim sup

i→∞

(
‖xni − p‖2 + 2〈xni − yni , p− zni〉

)
= lim sup

i→∞
‖xni − p‖2

= f(p). (4)

Hence it follows from (3) and (4) that ‖p−z‖ = 0. This completes the proof.
Now, by using lemmas, we give our main results in this paper.
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Theorem 1 Let C be a nonempty closed convex subset of a real Hilbert
space H and T be a multi-valued mapping of C into CB(C). Suppose that
there exists an element z0 ∈ C and zn ∈ Tzn−1 for all n ≥ 1 such that {zn}
is bounded and, for all y ∈ C, there exists a ∈ Ty such that

µn‖zn − a‖2 ≤ µn‖zn − y‖2

for a Banach limit µ. Then T has a fixed point in C.

Proof. Using a Banach limit µ on `∞, we can define a function g : C → R
as follows:

g(y) := µn‖zn − y‖2

for all y ∈ C. From Lemma 3, there exists a unique y0 ∈ C such that

g(y0) = min{g(y) : y ∈ C}.

So, there exist a0 ∈ Ty0 such that

g(a0) = µn‖zn − a0‖2 ≤ µn‖zn − y0‖2 = g(y0).

Since a0 ∈ C and y0 ∈ C is a unique element such that

g(y0) = min{g(y) : y ∈ C},

we have y0 = a0 ∈ Ty0. This completes the proof.

Theorem 2 Let C be a nonempty closed convex subset of a real Hilbert
space H and T : C → K(C) be a nonspreading-type multi-valued mapping.
Then the following are equivalent:

(1) There exists z0 ∈ C and zn ∈ Tzn−1 for all n ≥ 1 such that {zn} is
bounded.

(2) F (T ) is nonempty.

Proof. It is obvious that (2) implies (1). Now, we show that (1) implies (2).
Assume that there exists z0 ∈ C and zn ∈ Tzn−1 for all n ≥ 1 such that
{zn} is bounded. Let y ∈ C. From Lemma 8, there exists b ∈ Ty such that

‖zn+1 − b‖2 ≤ ‖zn − y‖2 + 2〈zn − zn+1, y − b〉
⇐⇒ ‖zn+1 − b‖2 ≤ ‖zn − y‖2 +

(
‖zn − b‖2 + ‖zn+1 − y‖2 − ‖zn − y‖2

−‖zn+1 − b‖2
)

⇐⇒ 2‖zn+1 − b‖2 − ‖zn − b‖2 ≤ ‖zn+1 − y‖2.
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Let µ be a Banach limit on `∞. For any n ∈ N , we have

2µn‖zn+1 − b‖2 − µn‖zn − b‖2 ≤ µn‖zn+1 − y‖2.

This implies that

µn‖zn − b‖2 ≤ µn‖zn − y‖2.

By Theorem 1, T has a fixed point in C. This completes the proof.

Next, we prove weak and strong convergence theorems for nonspreading-
type multi-valued mappings in a Hilbert space H.

Theorem 3 Let C be a nonempty closed convex subset of a real Hilbert
space H. For each i = 1, 2, · · · ,m, let Ti : C → CB(C) be a family
of nonspreading-type multi-valued mappings such that ∩mi=1F (Ti) 6= ∅. Let
αi,n ∈ (0, 1) for each i = 0, 1, 2, · · · ,m and

∑m
i=0 αi,n = 1 for each n ≥ 1.

Define a sequence {xn} by x1 ∈ C arbitrary and

xn+1 ∈ α0,nxn +
m∑
i=1

αi,nTixn (5)

for each n ≥ 1. Assume that the following conditions hold:

(a) Ti satisfies Condition (A) for each i = 1, 2, · · · ,m;

(b) lim infn→∞ α0,nαi,n > 0 for each i = 1, 2, · · · ,m.

Then, for each i = 1, 2, · · · ,m, limn→∞ d(xn, Tixn) = 0.

Proof. Let p ∈
⋂m

i=1 F (Ti). Since Ti satisfies Condition (A) for all i =
1, 2, · · · ,m, for some yin ∈ Tixn, we have

‖xn+1 − p‖ = ‖α0,n(xn − p) +

m∑
i=1

αi,n(yin − p)‖

≤ α0,n‖xn − p‖+

m∑
i=1

αi,n‖yin − p‖

= α0,n‖xn − p‖+

m∑
i=1

αi,nd(yin, Tip)

≤ α0,n‖xn − p‖+

m∑
i=1

αi,nH(Tixn, Tip)

≤ ‖xn − p‖. (6)
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Hence limn→∞ ‖xn − p‖ exists. This implies that {xn} is bounded. From
Lemma 4, we have

‖xn+1 − p‖2 = ‖α0,n(xn − p) +

m∑
i=1

αi,n(yin − p)‖2, yin ∈ Tixn

= α0,n‖xn − p‖2 +

m∑
i=1

αi,n‖yin − p‖2 −
m∑
i=1

α0,nαi,n‖xn − yin‖2

= α0,n‖xn − p‖2 +

m∑
i=1

αi,nd(yin, Tip)
2 −

m∑
i=1

α0,nαi,n‖xn − yin‖2

≤ α0,n‖xn − p‖2 +

m∑
i=1

αi,nH(Tix
i
n, Tip)

2 −
m∑
i=1

α0,nαi,n‖xn − yin‖2

≤ ‖xn − p‖2 −
m∑
i=1

α0,nαi,n‖xn − yin‖2.

It follows that

m∑
i=1

α0,nαi,n‖xn − yin‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2.

Since lim infn→∞ α0,nαi,n > 0 for each i = 1, 2, · · · ,m, we obtain

lim
n→∞

‖xn − yin‖ = 0, (7)

which implies that

lim
n→∞

d(xn, Tixn) ≤ lim
n→∞

‖xn − yin‖ = 0 (8)

for each i = 1, 2, · · · ,m. This completes the proof.

Theorem 4 Let C be a nonempty closed convex subset of a real Hilbert
space H. For each i = 1, 2, · · · ,m, let Ti : C → CB(C) be a finite family
of nonspreading-type multi-valued mappings such that

⋂m
i=1 F (Ti) 6= ∅. Let

αi,n ∈ (0, 1) for each i = 0, 1, 2, · · · ,m and
∑m

i=0 αi,n = 1 for each n ≥ 1.
Assume that the following conditions hold:

(a) Ti satisfies Condition (A) for each i = 1, 2, · · · ,m;

(b) lim infn→∞ α0,nαi,n > 0 for each i = 1, 2, · · · ,m.

Then the sequence {xn} defined by (5) converges weakly to a common fixed
point of the family {Ti : i = 1, 2, · · · ,m}.
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Proof. By Theorem 3, we know that {xn} is bounded. Thus there exists a
subsequence {xni} of {xn} such that xni ⇀ q ∈ C. From (7), limn→∞ ‖xn−
yin‖ = 0 for each i = 1, 2, · · · ,m. By Lemma 9, we obtain q ∈ ∩mi=1F (Ti).
Let {xnk

} be a subsequence of {xn} such that xnk
⇀ p. Using Lemma 9,

we get p ∈
⋂m

i=1 F (Ti). Thus, applying Lemma 5, we obtain p = q. This
completes the proof.

Theorem 5 Under the hypotheses of Theorem 3, assume that one of Ti is
completely continuous. Then the iterative sequence {xn} defined by (5) con-
verges strongly to a common fixed point of the family {Ti : i = 1, 2, · · · ,m}.

Proof. Suppose that Ti0 is completely continuous for some i0 ∈ {1, 2, · · · ,m}.
Since {xn} is bounded, there exists a subsequence {xnk

} such that
limk→∞ d(Ti0xnk

, p) = 0 for some p ∈ C. It follows from (8) that

‖xnk
− p‖ ≤ d(xnk

, Ti0xnk
) + d(Ti0xnk

, p)→ 0 (9)

as k →∞. From Lemma 8, for any yni
k
∈ Tixnk

, there exists bink
∈ Tip such

that

H(Tixnk
, Tip)

2 ≤ ‖xnk
− p‖2 + 2〈xnk

− yink
, p− bink

〉
≤ ‖xnk

− p‖2 + 2‖xnk
− yink

‖‖p− bink
‖.

Thus it follows from (7) that

lim
k→∞

H(Tixnk
, Tip) = 0 (10)

for each i ∈ {1, 2, · · · ,m}. For each i ∈ {1, 2, · · · ,m}, we have

d(p, Tip) ≤ ‖p− xnk
‖+ d(xnk

, Tixnk
) +H(Tixnk

, Tip). (11)

From (8), (9) and (10), we obtain d(p, Tip) = 0 for each i ∈ {1, 2, · · · ,m}.
Since Tip is closed, we have p ∈ ∩mi=1F (Ti). By Theorem 3, it follows that
limn→∞ ‖xn − p‖ exists. This implies that limn→∞ ‖xn − p‖ = 0. This
completes the proof.

Theorem 6 Under the hypotheses of Theorem 3, assume that one of Ti
is hemicompact. Then the iterative sequence {xn} defined by (5) converges
strongly to a common fixed point of the family {Ti : i = 1, 2, · · · ,m}.
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Proof. Suppose that Ti0 is hemicompact for some i0 ∈ {1, 2, · · · ,m}.
From (8), we have

lim
n→∞

d(xn, Ti0xn) = 0.

Then there exists a subsequence {xnk
} of {xn} such that xnk

→ p ∈ C.
From Lemma 8, for any yni

k
∈ Tixnk

, there exists bink
∈ Tip such that

H(Tixnk
, Tip)

2 ≤ ‖xnk
− p‖2 + 2〈xnk

− yink
, p− bink

〉
≤ ‖xnk

− p‖2 + 2‖xnk
− yink

‖‖p− bink
‖.

Thus it follows from (7) that

lim
k→∞

H(Tixnk
, Tip) = 0 (12)

for each i ∈ {1, 2, · · · ,m}. For each i ∈ {1, 2, · · · ,m}, we have

d(p, Tip) ≤ ‖p− xnk
‖+ d(xnk

, Tixnk
) +H(Tixnk

, Tip). (13)

Since xnk
→ p, by (8), (12) and (13), we obtain d(p, Tip) = 0 for each i ∈

{1, 2, · · · ,m}. Since Tip is closed, we have p ∈
⋂m

i=1 F (Ti). By Theorem 3, it
follows that limn→∞ ‖xn−p‖ exists. This implies that limn→∞ ‖xn−p‖ = 0.
This completes the proof.

If, for each i ∈ {1, 2, · · · ,m}, Tip = {p} for all p ∈ F (Ti), then Ti satisfies
Condition (A) for each i ∈ {1, 2, · · · ,m}. Then we obtain the following
results:

Corollary 1 Let C be a nonempty closed convex subset of a real Hilbert
space H. For each i = 1, 2, · · · ,m, let Ti : C → CB(C) be a finite family
of nonspreading-type multi-valued mappings such that

⋂m
i=1 F (Ti) 6= ∅. Let

αi,n ∈ (0, 1) for each i = 0, 1, 2, · · · ,m and
∑m

i=0 αi,n = 1 for each n ≥ 1.
Define a sequence {xn} by x1 ∈ C arbitrary and

xn+1 ∈ α0,nxn +
m∑
i=1

αi,nTixn (14)

for each n ≥ 1. Assume that the following conditions hold:

(a) for each i ∈ {1, 2, · · · ,m}, Tip = {p} for all p ∈ F (Ti);

(b) lim infn→∞ α0,nαi,n > 0 for each i = 1, 2, · · · ,m.

Then, for each i = 1, 2, · · · ,m, limn→∞ d(xn, Tixn) = 0.
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Corollary 2 Let C be a nonempty closed convex subset of a real Hilbert
space H. For each i = 1, 2, · · · ,m, let Ti : C → CB(C) be a finite family
of nonspreading-type multi-valued mappings such that

⋂m
i=1 F (Ti) 6= ∅. Let

αi,n ∈ (0, 1) for each i = 0, 1, 2, · · · ,m and
∑m

i=0 αi,n = 1 for each n ≥ 1.
Assume that the following conditions hold:

(a) for each i ∈ {1, 2, · · · ,m}, Tip = {p} for all p ∈ F (Ti);
(b) lim infn→∞ α0,nαi,n > 0 for each i = 1, 2, · · · ,m.

Then the sequence {xn} defined by (14) converges weakly to a common fixed
point of the family {Ti : i = 1, 2, · · · ,m}.

Corollary 3 Under the hypotheses of Corollary 1, assume that one of Ti is
completely continuous. Then the iterative sequence {xn} defined by (14) con-
verges strongly to a common fixed point of the family {Ti : i = 1, 2, · · · ,m}.

Corollary 4 Under the hypotheses of Corollary 1, assume that one of Ti
is hemicompact. Then the iterative sequence {xn} defined by (14) converges
strongly to a common fixed point of the family {Ti : i = 1, 2, · · · ,m}.

Since PTi satisfies Condition (A) for each i ∈ {1, 2, · · · ,m}, we also
obtain the following results:

Corollary 5 Let C be a nonempty closed convex subset of a real Hilbert
space H. For each i = 1, 2, · · · ,m, let Ti : C → CB(C) be a finite family of
multi-valued mappings such that

⋂m
i=1 F (Ti) 6= ∅. Let αi,n ∈ (0, 1) for each

i = 0, 1, 2, · · · ,m and
∑m

i=0 αi,m = 1 for each n ≥ 1. Define a sequence
{xn} by x1 ∈ C arbitrary and

xn+1 ∈ α0,nxn +

m∑
i=1

αi,nPTixn (15)

for each n ≥ 1. Assume that the following conditions hold:

(a) for each i ∈ {1, 2, · · · ,m}, PTi is a nonspreading-type multi-valued
mapping;

(b) lim infn→∞ α0,nαi,n > 0 for each i = 1, 2, · · · ,m.

Then, for each i = 1, 2, · · · ,m, limn→∞ d(xn, Tixn) = 0.

Proof.By the same proof as in Theorem 3, we have xn → yin ∈ PTixn. This
implies that

d(xn, Tixn) ≤ d(xn, PTixn) ≤ ‖xn − yin‖ → 0 (16)

as n→∞ for each i ∈ {1, 2, · · · ,m}.
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Corollary 6 Let C be a nonempty closed convex subset of a real Hilbert
space H. For each i = 1, 2, · · · ,m, let Ti : C → CB(C) be a finite family of
multi-valued mappings such that

⋂m
i=1 F (Ti) 6= ∅ and I −Ti is demiclosed at

0. Let αi,n ∈ (0, 1) for each i = 0, 1, 2, · · · ,m and
∑m

i=0 αi,m = 1 for each
n ≥ 1. Assume that the following conditions hold:

(a) for each i ∈ {1, 2, · · · ,m}, PTi is a nonspreading-type multi-valued
mapping;

(b) lim infn→∞ α0,nαi,n > 0 for each i = 1, 2, · · · ,m.

Then the sequence {xn} defined by (15) converges weakly to a common fixed
point of the family {Ti : i = 1, 2, · · · ,m}.

Proof. From I − Ti is demiclosed at 0 and (16) for each i ∈ {1, 2, · · · ,m},
we obtain the result.

Corollary 7 Under the hypotheses of Corollary 5, assume that one of Ti is
completely continuous. Then the iterative sequence {xn} defined by (15) con-
verges strongly to a common fixed point of the family {Ti : i = 1, 2, · · · ,m}.

Proof. Suppose that Ti0 is completely continuous for some i0 ∈ {1, 2, · · · ,m}.
Since {xn} is bounded, {xn} has a subsequence {xnk

} such that
limk→∞ d(Ti0xnk

, p) = 0 for some p ∈ C. It follows from (16) that

‖xnk
− p‖ ≤ d(xnk

, Ti0xnk
) + d(Ti0xnk

, p)→ 0 (17)

as k → ∞. From Lemma 8, for any yni
k
∈ PTixnk

, there exists bink
∈ PTip

such that

H(PTixnk
, PTip)

2 ≤ ‖xnk
− p‖2 + 2〈xnk

− yink
, p− bink

〉
≤ ‖xnk

− p‖2 + 2‖xnk
− yink

‖‖p− bink
‖.

Thus it follows from (16) that

lim
k→∞

H(PTixnk
, PTip) = 0 (18)

for each i ∈ {1, 2, · · · ,m}. For each i ∈ {1, 2, · · · ,m}, we have

d(p, Tip) ≤ d(p, PTip) ≤ ‖p−xnk
‖+d(xnk

, PTixnk
)+H(PTixnk

, PTip). (19)

From (16), (17) and (18), we obtain d(p, Tip) = 0 for each i ∈ {1, 2, · · · ,m}.
Since Tip is closed, we have p ∈

⋂m
i=1 F (Ti). By Theorem 3, it follows that

limn→∞ ‖xn − p‖ exists. This implies that limn→∞ ‖xn − p‖ = 0. This
completes the proof.
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Corollary 8 Under the hypotheses of Corollary 5, assume that one of Ti
is hemicompact. Then the iterative sequence {xn} defined by (15) converges
strongly to a common fixed point of the family {Ti : i = 1, 2, · · · ,m}.

Proof. Suppose that Ti0 is hemicompact for some i0 ∈ {1, 2, · · · ,m}. From
(16), we have

lim
n→∞

d(xn, PTi0
xn) = 0.

Then there exists a subsequence {xnk
} of {xn} such that xnk

→ p ∈ C.
From Lemma 8, for any yni

k
∈ PTixnk

, there exists bink
∈ PTip such that

H(PTixnk
, PTip)

2 ≤ ‖xnk
− p‖2 + 2〈xnk

− yink
, p− bink

〉
≤ ‖xnk

− p‖2 + 2‖xnk
− yink

‖‖p− bink
‖.

Thus it follows from (16) that

lim
k→∞

H(PTixnk
, PTip) = 0 (20)

for each i ∈ {1, 2, · · · ,m}. For each i ∈ {1, 2, · · · ,m}, we have

d(p, Tip) ≤ d(p, PTip) ≤ ‖p−xnk
‖+d(xnk

, PTixnk
)+H(PTixnk

, PTip). (21)

Since xnk
→ p, by (16) and (20), we obtain d(p, Tip) = 0 for each i ∈

{1, 2, · · · ,m}. Since Tip is closed, we have p ∈ ∩mi=1F (Ti). By Theorem 3, it
follows that limn→∞ ‖xn−p‖ exists. This implies that limn→∞ ‖xn−p‖ = 0.
This completes the proof.

4 Examples and Numerical Results

In this section, we give examples and numerical results to illustrate
Theorem 4.

Example 2 Let H = R and C = [−3, 0]. Let

T1x =

{
{−3}, x ∈ [−3,−1];[
− 3, log(x+ 4)− 3

]
, x ∈ (−1, 0],

and

T2x =

{
{−3}, x ∈ [−3,−1];[
− 3,−2− |x|

|x|+1

]
, x ∈ (−1, 0].
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Choose α0,n = 18n−1
20n and α1,n = α2,n = 2n−1

40n . We know that T1 and T2 are
nonspreading-type multi-valued mappings. It is easy to check that F1 and
F2 satisfy all the conditions in Theorem 4, T1, T2 satisfy Condition (A) such
that F (T1) ∩ F (T2) = {−3}. Thus we compute the sequence {xn} by the
following iteration:

xn+1 =
(18n− 1

20n

)
xn +

(2n− 1

40n

)
yn +

(2n− 1

40n

)
zn,

where

yn ∈
{
{−3}, xn ∈ [−3,−1];[
− 3, log(xn + 4)− 3

]
, xn ∈ (−1, 0],

and

zn ∈

{
{−3}, xn ∈ [−3,−1];[
− 3,−2− |xn|

|xn|+1

]
, xn ∈ (−1, 0].

Choose x1 = 0 and take randomly yn and zn in the above intervals, we
have the following:

n yn zn xn ‖xn+1 − xn‖
1 -2.69764E+00 -2.46309E+00 0.00000E+00 1.88163E-01

2 -2.98925E+00 -2.45848E+00 -1.29018E-01 1.66372E-01

3 -2.44224E+00 -2.43879E+00 -3.17181E-01 1.82720E-01

4 -2.48261E+00 -2.93727E+00 -4.83553E-01 1.65138E-01

5 -2.55020E+00 -2.74820E+00 -6.66273E-01 1.63008E-01

6 -2.94919E+00 -2.57249E+00 -8.31410E-01 1.52187E-01

7 -2.89553E+00 -2.67715E+00 -9.94418E-01 1.59423E-01

8 -3.00000E+00 -3.00000E+00 -1.14660E+00 1.45475E-01

9 -3.00000E+00 -3.00000E+00 -1.30603E+00 1.32592E-01

10 -3.00000E+00 -3.00000E+00 -1.45150E+00 1.20754E-01
...

...
...

...
...

500 -3.00000E+00 -3.00000E+00 -2.99388E+00 1.24072E-05

Table 1: Numerical results of Example 2 being randomized in the first
time.
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n yn zn xn ‖xn+1 − xn‖
1 -2.94261E+00 -2.44324E+00 0.00000E+00 1.87934E-01

2 -2.83431E+00 -2.62610E+00 -1.34646E-01 1.94127E-01

3 -2.65057E+00 -2.91171E+00 -3.22581E-01 1.65696E-01

4 -2.54458E+00 -2.57143E+00 -5.16708E-01 1.78607E-01

5 -2.97085E+00 -2.66629E+00 -6.82404E-01 1.70002E-01

6 -2.88750E+00 -2.85675E+00 -8.61011E-01 1.68106E-01

7 -3.00000E+00 -3.00000E+00 -1.03101E+00 1.53844E-01

8 -3.00000E+00 -3.00000E+00 -1.19912E+00 1.40521E-01

9 -3.00000E+00 -3.00000E+00 -1.35296E+00 1.28184E-01

10 -3.00000E+00 -3.00000E+00 -1.49348E+00 1.16826E-01
...

...
...

...
...

500 -3.00000E+00 -3.00000E+00 -2.99388E+00 1.24072E-05

Table 2: Numerical results of Example 2 being randomized in the second
time.

From Table 1 and Table 2, we see that −3 is the common fixed point of T1
and T2 in Example 2.
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Figure 1: Error plots for all sequences {xn} in Table 1 and Table 2.
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[15] D. Göhde, Zum Prinzip der kontraktiven Abbildung. Math. Nachr.
30:251-258, 1965.

[16] N. Hirano, A proof of the mean ergodic theorem for nonexpansive map-
pings in Banach spaces. Proc. Amer. Math. Soc. 78:361-365, 1980.

[17] S. Iemoto, W. Takahashi, Approximating common fixed points of non-
expansive mappings and nonspreading mappings in a Hilbert space.
Nonlinear Anal. 71:2082-2089, 2009.

[18] J. S. Jung, Strong convergence theorems for multivalued nonexpansiv
nonself-mappings in Banach spaces.Nonlinear Anal. 66:2345-2354, 2007.

[19] W. A. Kirk, A fixed point theorem for mappings which do not increase
distances.Amer. Math. Monthly . 72:1004-1006, 1965.

[20] W. A. Kirk, S. Massa, Remarks on asymptotic and Chebyshev centers.
Houston J. Math. 16:357-364, 1990.

[21] F. Kohsaka, W. Takahashi, Fixed point theorems for a class of nonlin-
ear mappings relate to maximal monotone operators in Banach spaces.
Arch. Math. 91:166-177, 2008.

[22] F. Kohsaka, W. Takahashi, Existence and approximation of fixed points
of firmly nonexpansive-type mappings in Banach spaces. SIAM J. Op-
tim. 19: 824-835, 2008.

[23] T. C. Lim, A fixed point theorem for multivalued nonexpansive map-
pings in a uniformly convex Banach space.Bull. Amer. Math. Soc.
80:1123-1126, 1974.

[24] P. K. Lin, K. K. Tan, H. K. Xu, Demiclosedness principle and asymp-
totic behavior for asymptotically nonexpansive mappings.Nonlinear
Anal. 24:929-946, 1995.



Fixed points for nonspreading-type multi-valued mappings 423

[25] G. Marino, H. K. Xu, Weak and strong convergence theorems for strict
pseudo-contractions in Hilbert spaces.J. Math. Anal. Appl. 329:336-346,
2007.

[26] J. T. Markin, A fixed point theorem for set valued mappings.Bull.
Amer. Math. Soc. 74:639-640, 1968.

[27] K. Muangchoo-in, P. Kumam, Y. J. Cho, Approximating common fixed
points of two α-nonexpansive mappings.Thai J. Math. 16:139-143, 2018.

[28] S. B. Nadler, Jr., Multi-valued contraction mappings.Pacific J. Math.
30:475-488, 1969.

[29] Z. Opial, Weak convergence of the sequence of successive approximation
for nonexpansive mappings.Bull. Amer. Math. Soc. 73:561-597, 1967.

[30] S. Reich, Approximate selections, best approximations, fixed points,
and invariant sets.J. Math. Anal. Appl. 62:104-113, 1978.

[31] S. Reich, Weak convergence theorems for nonexpansive mappings in
Banach spaces.J Math Anal Appl. 67:274-276, 1979.

[32] D. R. Sahu, Strong convergence theorems for nonexpansive type and
non-self-multi-valued mappings.Nonlinear Anal. 37:401-407, 1999.

[33] Y. Song, Y. J. Cho, Some note on Ishikawa iteration for multi-valued
mappings.Bull. Korean Math. Soc. 48:575-584, 2011.

[34] S. Suantai, P. Cholamjiak, Y. J. Cho, W. Cholamjiak, On solving split
equilibrium problems and fixed point problems of nonspreading multi-
valued mappings in Hilbert spaces.Fixed Point Theory Appl. 35:2016.

[35] Y. Song, K. Muangchoo-in, P. Kumam, Y. J. Cho, Successive approx-
imations for common fixed points of a family of α–nonexpansive map-
pings.J. Fixed Point Theory Appl. 20:2018.

[36] Y. Song, K. Promluang, Y. J. Cho, P. Kumam, Some convergence
theorems of the Mann iteration for monotone α-nonexpansive map-
pings.Appl. Math. Comput. 28774-82, 2016.

[37] S. Suantai, Weak and strong convergence criteria of Noor iterations for
asymptotically nonexpansive mappings.J. Math. Anal. Appl. 311:506-
517, 2005.



424 W. Cholamjiak, S. Suantai, Y. J. Cho

[38] W. Takahashi, Fixed point theorems for new nonlinear mappings in a
Hilbert space.J. Nonlinear Convex Anal. 11:79-88, 2010.

[39] W. Takahashi,Introduction to Nonlinear and Convex Analysis, Yoko-
hama Publishers, Yokohama, 2005 (in Japanese).

[40] W. Takahashi,Nonlinear Functional Analysis, Fixed Point Theory and
its Applications, Yokohama Publishers, Yokohama, 2000 (in Japanese).

[41] W. Takahashi, J. C. Yao, Fixed point theorems and ergodic theorems
for nonlinear mappings in Hilbert spaces.Taiwan. J. Math. 15:457-472,
2011.

[42] D. Turkoglu, I. Altun, A fixed point theorem for multi-valued mappings
and its applications to integral inclusions.Appl. Math. Lett. 20:563-570,
2007.

[43] H. K. Xu, Existence and convergence for fixed points of mappings of
asymptotically nonexpansive type.Nonlinear Anal. 16:1139-1146, 1991.

[44] H. K. Xu, Multivalued nonexpansive mappings in Banach
spaces.Nonlinear Anal. 43:693-706, 2001.


