Ann. Acad. Rom. Sci.
Ser. Math. Appl.
ISSN 2066-6594
Vol. 10, No. 2/2018

ESSENTIAL NORM ESTIMATES FOR LITTLE HANKEL OPERATORS ON $L_{a}^{2}\left(\mathbb{C}_{+}\right)^{*}$

Jitendra Kumar Behera ${ }^{\dagger} \quad$ Namita Das ${ }^{\ddagger}$

Abstract

In this paper, we give estimates for the essential norm of a bounded little Hankel operator defined on the Bergman space of the right half plane. As an application of these estimates, we also give a necessary and sufficient condition for the little Hankel operator to be compact.

MSC: 47B35, 30H20.
keywords: Bergman space; right half plane; essential norm; little Hankel operators; automorphism.

1 Introduction

Let $\mathbb{C}_{+}=\{s=x+i y \in \mathbb{C}: \operatorname{Re} s>0\}$ be the right half plane. Let $d \mu(s)=d x d y$ be the area measure. Let $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ be the space of complexvalued, square-integrable, measurable functions on \mathbb{C}_{+}with respect to the area measure. Let $L_{a}^{2}\left(\mathbb{C}_{+}\right)$be the closed subspace [1] of $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ consisting of those functions in $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ that are analytic. The space $L_{a}^{2}\left(\mathbb{C}_{+}\right)$ is referred to as the Bergman space of the right half plane. The functions

[^0]$H(s, w)=\frac{1}{(s+\bar{w})^{2}}, s \in \mathbb{C}_{+}, w \in \mathbb{C}_{+}$is the reproducing kernel [2] for $L_{a}^{2}\left(\mathbb{C}_{+}\right)$. Let $L^{\infty}\left(\mathbb{C}_{+}\right)$be the space of complex-valued, essentially bounded, Lebesgue measurable functions on \mathbb{C}_{+}. For $f \in L^{\infty}\left(\mathbb{C}_{+}\right),\|f\|_{\infty}=\operatorname{ess} \sup _{s \in \mathbb{C}_{+}}|f(s)|<\infty$.
The space $L^{\infty}\left(\mathbb{C}_{+}\right)$is a Banach space with respect to the essential supremum norm. For $\phi \in L^{\infty}\left(\mathbb{C}_{+}\right)$, we define the multiplication operator \mathcal{M}_{ϕ} from $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ into $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ by $\left(\mathcal{M}_{\phi} f\right)(s)=\phi(s) f(s)$ and the little Hankel operator \hbar_{ϕ} is a mapping from $L_{a}^{2}\left(\mathbb{C}_{+}\right)$into $\overline{L_{a}^{2}\left(\mathbb{C}_{+}\right)}$defined by $\hbar_{\phi} f=\bar{P}_{+}(\phi f)$, where \bar{P}_{+}is the projection operator from $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ onto $\overline{L_{a}^{2}\left(\mathbb{C}_{+}\right)}=\left\{\bar{f}: f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)\right\}$. There are also many equivalent ways of defining little Hankel operators on $L_{a}^{2}\left(\mathbb{C}_{+}\right)$. Let \mathcal{S}_{ϕ} be the mapping from $L_{a}^{2}\left(\mathbb{C}_{+}\right)$into $L_{a}^{2}\left(\mathbb{C}_{+}\right)$defined by $\mathcal{S}_{\phi} f=P_{+}(\mathcal{J}(\phi f))$, where P_{+}denote the orthogonal projection from $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ onto $L_{a}^{2}\left(\mathbb{C}_{+}\right)$and \mathcal{J} is the mapping from $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ into $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ such that $\mathcal{J} f(s)=f(\bar{s})$. Notice that \mathcal{J} is unitary and $\mathcal{J} \mathcal{S}_{\phi} f=\mathcal{J}\left(P_{+}(\mathcal{J}(\phi f))\right)=\mathcal{J} P_{+} \mathcal{J}(\phi f)=\bar{P}_{+}(\phi f)=\hbar_{\phi} f$ for $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$. Let $\boldsymbol{\Gamma}_{\phi}$ be the mapping from $L_{a}^{2}\left(\mathbb{C}_{+}\right)$into $L_{a}^{2}\left(\mathbb{C}_{+}\right)$defined by $\boldsymbol{\Gamma}_{\phi} f=P_{+} \mathcal{M}_{\phi} \mathcal{J} f$. Thus $\boldsymbol{\Gamma}_{\phi} f=P_{+} \mathcal{M}_{\phi} \mathcal{J} f=P_{+}(\phi(s) f(\bar{s}))=$ $P_{+}(\mathcal{J}(\phi(\bar{s}) f(s)))=\mathcal{S}_{\mathcal{J} \phi} f$ for all $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$. Hence $\boldsymbol{\Gamma}_{\phi} f=\mathcal{S}_{\mathcal{J} \phi} f$. Thus we obtain $\hbar_{\phi}=\mathcal{J} \mathcal{S}_{\phi}$ and $\boldsymbol{\Gamma}_{\phi}=\mathcal{S}_{\mathcal{J} \phi}$. Since \mathcal{J} is unitary, the three operators $\hbar_{\phi}, \mathcal{S}_{\phi}$ and $\boldsymbol{\Gamma}_{\phi}$ are referred to as little Hankel operators on $L_{a}^{2}\left(\mathbb{C}_{+}\right)$and a given result on little Hankel operators can be stated using the operators $\hbar_{\phi}, \mathcal{S}_{\phi}$ and $\boldsymbol{\Gamma}_{\phi}$.

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disk in the complex plane \mathbb{C}. Let $L^{2}(\mathbb{D}, d A)$ be the space of complex- valued, square-integrable, measurable functions on \mathbb{D} with respect to the normalized area measure $d A(z)=\frac{1}{\pi} d x d y$. Let $L_{a}^{2}(\mathbb{D})$ be the space consisting of those functions of $L^{2}(\mathbb{D}, d A)$ that are analytic. The space $L_{a}^{2}(\mathbb{D})$ is a closed subspace of $L^{2}(\mathbb{D}, d A)$ and is called the Bergman space of the open unit disk \mathbb{D}. Let $L^{\infty}(\mathbb{D})$ be the space of complex-valued, essentially bounded, Lebesgue measurable functions on \mathbb{D} with the essential supremum norm. For $\phi \in L^{\infty}(\mathbb{D})$, the multiplication operator M_{ϕ} from $L^{2}(\mathbb{D}, d A)$ into $L^{2}(\mathbb{D}, d A)$ is defined by $M_{\phi} f=\phi f$ and the little Hankel operator h_{ϕ} is a mapping from $L_{a}^{2}(\mathbb{D})$ into $\overline{L_{a}^{2}(\mathbb{D})}$ defined by $h_{\phi} f=\bar{P}(\phi f)$, where \bar{P} is the projection operator from $L^{2}(\mathbb{D}, d A)$ onto $\overline{L_{a}^{2}(\mathbb{D})}=\left\{\bar{f}: f \in L_{a}^{2}(\mathbb{D})\right\}$. Let S_{ϕ} be the mapping from $L_{a}^{2}(\mathbb{D})$ into $L_{a}^{2}(\mathbb{D})$ defined by $S_{\phi} f=P(J(\phi f))$, where P is the orthogonal projection from $L^{2}(\mathbb{D}, d A)$ onto $L_{a}^{2}(\mathbb{D})$ and J is the mapping from $L^{2}(\mathbb{D}, d A)$ into itself such that $J f(z)=f(\bar{z})$. Notice that J is unitary and $J S_{\phi} f=J(P(J(\phi f)))=J P J(\phi f)=\bar{P}(\phi f)=h_{\phi} f$ for all $f \in L_{a}^{2}(\mathbb{D})$. Let Γ_{ϕ} be the mapping from $L_{a}^{2}(\mathbb{D})$ into $L_{a}^{2}(\mathbb{D})$ defined by $\Gamma_{\phi} f=P M_{\phi} J f$, where M_{ϕ}
is the mapping from $L^{2}(\mathbb{D}, d A)$ into $L^{2}(\mathbb{D}, d A)$ defined by $M_{\phi} f=\phi f$. Thus $\Gamma_{\phi} f=P M_{\phi} J f=P(\phi(z) f(\bar{z}))=P(J(\phi(\bar{z}) f(z)))=S_{J \phi} f$ for all $f \in L_{a}^{2}(\mathbb{D})$. Hence $\Gamma_{\phi}=S_{J \phi}$. Since J is unitary, the three operators h_{ϕ}, S_{ϕ} and Γ_{ϕ} are referred to as little Hankel operators on $L_{a}^{2}(\mathbb{D})$. The sequence of functions $\left\{e_{n}(z)\right\}_{n=0}^{\infty}=\left\{\sqrt{n+1} z^{n}\right\}_{n=0}^{\infty}$ form an orthonormal basis for $L_{a}^{2}(\mathbb{D})$. Since point evaluation at $z \in \mathbb{D}$ is a bounded linear functional on the Hilbert space $L_{a}^{2}(\mathbb{D})$, the Riesz representation theorem implies that there exists a unique function K_{z} in $L_{a}^{2}(\mathbb{D})$ such that

$$
f(z)=\int_{\mathbb{D}} f(w) \overline{K_{z}(w)} d A(w) .
$$

for all f in $L_{a}^{2}(\mathbb{D})$. Let $K(z, w)$ be the function on $\mathbb{D} \times \mathbb{D}$ defined by

$$
K(z, w)=\overline{K_{z}(w)} .
$$

The function $K(z, w)$ is analytic in z and co-analytic in w. Since

$$
f(z)=\int_{\mathbb{D}} f(w) K(z, w) d A(w), f \in L_{a}^{2}(\mathbb{D})
$$

the function $K(z, w)=\frac{1}{\left(1-z \overline{)^{2}}\right.}, z, w \in \mathbb{D}$ and is the reproducing kernel 7$]$ of $L_{a}^{2}(\mathbb{D})$. For $a \in \mathbb{D}$, let $k_{a}(z)=\frac{K(z, a)}{\sqrt{K(a, a)}}=\frac{\left(1-|a|^{2}\right)}{(1-\bar{a} z)^{2}}$. The function k_{a} is called the normalized reproducing kernel for $L_{a}^{2}(\mathbb{D})$. It is clear that $\left\|k_{a}\right\|_{2}=1$. Let $\operatorname{Aut}(\mathbb{D})$ be the Lie group of all automorphisms (biholomorphic mappings) of \mathbb{D}. We can define for each $a \in \mathbb{D}$ an automorphism ϕ_{a} in $\operatorname{Aut}(\mathbb{D})$ such that
(i) $\left(\phi_{a} \circ \phi_{a}\right)(z)=z$;
(ii) $\phi_{a}(0)=a, \phi_{a}(a)=0$;
(iii) ϕ_{a} has a unique fixed point in \mathbb{D}.

In fact, $\phi_{a}(z)=\frac{a-z}{1-\bar{a} z}$ for all a and z in \mathbb{D}. An easy calculation shows that the derivative of ϕ_{a} at z is equal to $-k_{a}(z)$. It follows that the real Jacobian determinant of ϕ_{a} at z is $J_{\phi_{a}}(z)=\left|k_{a}(z)\right|^{2}=\frac{\left(1-|a|^{2}\right)}{|1-\bar{a} z|^{4}}$. Given $a \in \mathbb{D}$ and f any measurable function on \mathbb{D}, we define a function $U_{a} f$ on \mathbb{D} by $U_{a} f(z)=$ $k_{a}(z) f\left(\phi_{a}(z)\right)$. Let $\mathcal{L}(H)$ be the set of all bounded linear operators from the Hilbert space H into itself. Let $\mathcal{L C}(H)$ be the set of all compact operators in $\mathcal{L}(H)$. The essential norm of an operator $T \in \mathcal{L}(H)$ is the distance of the operator from the space of compact operators, that is

$$
\|T\|_{e}=\inf \{\|T-K\|: K \text { is compact. }\}
$$

In particular, T is compact if and only if $\|T\|_{e}=0$. Essential norm estimates for bounded operators on the Bergman space are studied in [4] and [6].
The layout of this paper is as follows. In $\S 2$, we introduce a class of unitary operators defined on $L_{a}^{2}\left(\mathbb{C}_{+}\right)$induced by the automorphisms $t_{a}(s)$ of \mathbb{C}_{+}. In $\S 3$, we introduce the functions $B(s, w), B_{\bar{w}}(s)$ and $b_{\bar{w}}(s), s, w \in \mathbb{C}_{+}$and establish relations between them. We also show that the function $B(s, w)$ satisfy an inequality like the Bergman kernel (see [3) $K(z, w)$ defined for the space $L_{a}^{2}(\mathbb{D})$. In $\S 4$, we introduce the operators Q_{1} and \mathcal{V}_{1} and show that they are bounded on $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$. In $\S 5$, we establish that if $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$, then the little Hankel operator $\hbar_{\bar{\phi}}$ is bounded if and only if $\mathcal{V}_{1} \phi$ is bounded on \mathbb{C}_{+}. In $\S 6$, we give estimates for the essential norm of bounded little Hankel operators on the Bergman space $L_{a}^{2}\left(\mathbb{C}_{+}, d \mu\right)$ in terms of the function $\mathcal{V}_{1} \phi$ and applications of the result are also obtained.

2 A class of unitary operators on $L_{a}^{2}\left(\mathbb{C}_{+}\right)$

In this section, we introduce a class of unitary operators defined on $L_{a}^{2}\left(\mathbb{C}_{+}\right)$ induced by the automorphisms $t_{a}(s)$ of \mathbb{C}_{+}.

Define $M: \mathbb{C}_{+} \rightarrow \mathbb{D}$ by $M s=\frac{1-s}{1+s}$. Then M is one-one, onto and $M^{-1}: \mathbb{D} \rightarrow \mathbb{C}_{+}$is given by $M^{-1}(z)=\frac{1-z}{1+z}$. Thus M is its self-inverse. Let $W: L_{a}^{2}(\mathbb{D}) \rightarrow L_{a}^{2}\left(\mathbb{C}_{+}\right)$be defined by $W g(s)=\frac{2}{\sqrt{\pi}} g(M s) \frac{1}{(1+s)^{2}}$. The map W is one-one and onto. Hence W^{-1} exists and $W^{-1}: L_{a}^{2}\left(\mathbb{C}_{+}\right) \rightarrow L_{a}^{2}(\mathbb{D})$ is given by $W^{-1} G(z)=2 \sqrt{\pi} G(M z) \frac{1}{(1+z)^{2}}$, where $M z=\frac{1-z}{1+z}$.
Lemma 1. If $a \in \mathbb{D}$ and $a=c+i d, c, d \in \mathbb{R}$, then the following hold:
(i) $t_{a}(s)=\frac{-i d s+(1-c)}{(1+c) s+i d}$ is an automorphism from \mathbb{C}_{+}onto \mathbb{C}_{+}.
(ii) $\left(t_{a} \circ t_{a}\right)(s)=s$.
(iii) $t_{a}^{\prime}(s)=-l_{a}(s)$, where $l_{a}(s)=\frac{1-|a|^{2}}{((1+c) s+i d)^{2}}$.

Proof. This can be verified by direct calculations.
For $a \in \mathbb{D}$, define $V_{a}: L_{a}^{2}\left(\mathbb{C}_{+}\right) \rightarrow L_{a}^{2}\left(\mathbb{C}_{+}\right)$by $\left(V_{a} g\right)(s)=\left(g \circ t_{a}\right)(s) l_{a}(s)$. In Proposition 1, we show that V_{a} is a self-adjoint, unitary operator which is also an involution.

Proposition 1. For $a \in \mathbb{D}$,
(i) $V_{a} l_{a}=1$.
(ii) $V_{a}^{-1}=V_{a}$ and V_{a} is an involution, i.e. $V_{a}^{2}=I_{\mathcal{L}\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right)}$, where $I_{\mathcal{L}\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right)}$ is the identity operator from $L_{a}^{2}\left(\mathbb{C}_{+}\right)$into itself.
(iii) V_{a} is self-adjoint.
(iv) V_{a} is unitary, $\left\|V_{a}\right\|=1$.
(v) $V_{a} P_{+}=P_{+} V_{a}$.

Proof. One can prove (i), (ii), (iii) and (iv) by direct calculations. Notice that V_{a} can also be defined from $L^{2}\left(\mathbb{C}_{+}\right)$into itself. To prove (v), observe that $V_{a}\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right) \subset L_{a}^{2}\left(\mathbb{C}_{+}\right)$and $V_{a}\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right)^{\perp} \subset\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right)^{\perp}$. Now let $f \in$ $L^{2}\left(\mathbb{C}_{+}\right)$and $f=f_{1}+f_{2}$, where $f_{1} \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and $f_{2} \in\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right)^{\perp}$. Hence,

$$
P_{+} V_{a} f=P_{+} V_{a}\left(f_{1}+f_{2}\right)=P_{+}\left(V_{a} f_{1}+V_{a} f_{2}\right)=P_{+} V_{a} f_{1}=V_{a} f_{1}=V_{a} P_{+} f .
$$

3 The function $B(s, w)$

In this section, we introduce the functions $B(s, w)$ and $b_{\bar{w}}(s), s, w \in \mathbb{C}_{+}$and establish relations between them. We also show that the function $B(s, w)$ satisfy an inequality like the Bergman kernel (see [3]) $K(z, w)$ defined for the space $L_{a}^{2}(\mathbb{D})$.

Suppose $a \in \mathbb{D}$ and $w=\frac{1-\bar{a}}{1+\bar{a}}=M \bar{a} \in \mathbb{C}_{+}$. Define $b_{\bar{w}}(s)=\frac{1}{\sqrt{\pi}} \frac{1+w}{1+\bar{w}} \frac{2 R e w}{(s+w)^{2}}$. Let $B(s, w)=B_{\bar{w}}(s)=\frac{1}{\pi} \frac{(1+a)^{2}}{(1-\bar{a} M s)^{2}} \frac{1}{(1+s)^{2}}$.

Lemma 2. Let $s, w \in \mathbb{C}_{+}$. The following hold:
(i) $\left(b_{\bar{w}}(\bar{w})\right)^{2}=B(\bar{w}, w)$.
(ii) $\left|b_{\bar{w}}(s)\right|\left\|B_{\bar{w}}\right\|=\left|B_{\bar{w}}(s)\right|$.

Proof. Let $w \in \mathbb{C}_{+}$and $w=M \bar{a}=\frac{1-\bar{a}}{1+\bar{a}}$. Since

$$
\begin{aligned}
b_{\bar{w}}(s) & =\frac{1}{\sqrt{\pi}} \frac{1+w}{1+\bar{w}} \frac{2 R e w}{[s+w]^{2}}=\frac{2}{\sqrt{\pi}} \frac{\operatorname{Rew}}{(1+w)(1+\bar{w})} \frac{(1+w)^{2}}{[s+w]^{2}} \\
& =\frac{2}{\sqrt{\pi}} \frac{4 \operatorname{Re} w}{|1+w|^{2}} \frac{(1+w)^{2}}{4} \frac{1}{[s+w]^{2}}=\frac{2}{\sqrt{\pi}} \frac{\frac{|1+w|^{2}-|1-w|^{2}}{|1+w|^{2}}}{\left[\frac{2}{(1+w)}\right]^{2}} \frac{1}{[s+w]^{2}} \\
& =\frac{2}{\sqrt{\pi}} \frac{1-\left|\frac{1-w}{1+w}\right|^{2}}{\left(1+\frac{1-w}{1+w)^{2}} \frac{1}{[s+w]^{2}}=\frac{2}{\sqrt{\pi}} \frac{1-|a|^{2}}{(1+\bar{a})^{2}} \frac{1}{[s+w]^{2}}, \text { where } \frac{1-\bar{a}}{1+\bar{a}}=w\right.} \\
& =\frac{2}{\sqrt{\pi}} \frac{1-|a|^{2}}{(1+\bar{a})^{2}} \frac{1}{\left[s+\frac{1-\bar{a}}{1+\bar{a}}\right]^{2}}=\frac{2}{\sqrt{\pi}} \frac{1-|a|^{2}}{(1+\bar{a})^{2}\left[s+\frac{1-\bar{a}}{1+\bar{a}}\right]^{2}} \\
& =\frac{2}{\sqrt{\pi}} \frac{1-|a|^{2}}{[1-\bar{a}+s(1+\bar{a})]^{2}}=\frac{2}{\sqrt{\pi}} \frac{1-|a|^{2}}{[1+s-\bar{a}+\bar{a} s]^{2}} \\
& =\frac{(-1)}{\sqrt{\pi}} \frac{\left(1-|a|^{2}\right)(1+s)^{2}}{[1+s-\bar{a}+\bar{a} s]^{2}} \frac{(-2)}{(1+s)^{2}}=\frac{(-1)}{\sqrt{\pi}} \frac{1-|a|^{2}}{\left[1-\bar{a} \frac{1-s}{1+s}\right]^{2}} \frac{(-2)}{(1+s)^{2}} \\
& =\frac{2}{\sqrt{\pi}} \frac{1-|a|^{2}}{[1-\bar{a}(M s)]^{2}} \frac{1}{(1+s)^{2}}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
b_{\bar{w}}(\bar{w}) & =\frac{2}{\sqrt{\pi}} \frac{\left(1-|a|^{2}\right)}{(1-\bar{a} M \bar{w})^{2}} \frac{1}{(1+\bar{w})^{2}}=\frac{2}{\sqrt{\pi}} \frac{\left(1-|a|^{2}\right)}{\left(1-|a|^{2}\right)^{2}} \frac{1}{\left(1+\frac{1-a}{1+a}\right)^{2}} \\
& =\frac{2}{\sqrt{\pi}} \frac{1}{\left(1-|a|^{2}\right)} \frac{(1+a)^{2}}{4}=\frac{1}{2 \sqrt{\pi}} \frac{(1+a)^{2}}{\left(1-|a|^{2}\right)}
\end{aligned}
$$

Thus

$$
\begin{aligned}
b_{\bar{w}}(s) b_{\bar{w}}(\bar{w}) & =\frac{2}{\sqrt{\pi}} \frac{\left(1-|a|^{2}\right)}{(1-\bar{a} M s)^{2}} \frac{1}{(1+s)^{2}} \frac{1}{2 \sqrt{\pi}} \frac{(1+a)^{2}}{\left(1-|a|^{2}\right)} \\
& =\frac{1}{\pi} \frac{1}{(1-\bar{a} M s)^{2}} \frac{(1+a)^{2}}{(1+s)^{2}}=\frac{(-1)}{2 \pi} \frac{(1+a)^{2}}{(1-\bar{a} M s)^{2}} \frac{(-2)}{(1+s)^{2}} \\
& =\frac{(-1)}{2 \pi} \frac{(1+a)^{2}}{(1-\bar{a} M s)^{2}} M^{\prime}=B(s, w)
\end{aligned}
$$

Thus $b_{\bar{w}}(s)=\frac{B(s, w)}{b_{\bar{w}}(\bar{w})}$ and $\left(b_{\bar{w}}(\bar{w})\right)^{2}=B(\bar{w}, w)$. This proves (i). To prove (ii),
notice that

$$
\begin{aligned}
\left\|B_{\bar{w}}\right\|^{2} & =\left\langle B_{\bar{w}}, B_{\bar{w}}\right\rangle=\int_{\mathbb{C}_{+}}\left|B_{\bar{w}}(s)\right|^{2} d \mu(s)=\int_{\mathbb{C}_{+}}|B(s, w)|^{2} d \mu(s) \\
& =\int_{\mathbb{C}_{+}}\left|b_{\bar{w}}(\bar{w})\right|^{2}\left|b_{\bar{w}}(s)\right|^{2} d \mu(s)=\left|b_{\bar{w}}(\bar{w})\right|^{2} \int_{\mathbb{C}_{+}}\left|b_{\bar{w}}(s)\right|^{2} d \mu(s) \\
& =\left|b_{\bar{w}}(\bar{w})\right|^{2}| | b_{\bar{w}} \|_{2}^{2}=\left|b_{\bar{w}}(\bar{w})\right|^{2},
\end{aligned}
$$

since $\left\|b_{\bar{w}}\right\|_{2}=1$. Thus $\left\|B_{\bar{w}}\right\|=\left|b_{\bar{w}}(\bar{w})\right|$ and hence $\left|b_{\bar{w}}(s)\right|\left\|B_{\bar{w}}\right\|=\left|B_{\bar{w}}(s)\right|$.

Lemma 3. Suppose $-\frac{1}{2}<q<p-1$. Then there exists a positive constant C such that

$$
\int_{\mathbb{C}_{+}}|B(\bar{s}, \bar{w})|^{p}|B(\bar{w}, w)|^{-q} d \mu(\bar{w}) \leq C|B(\bar{s}, s)|^{p-q-1}
$$

for all $s \in \mathbb{C}_{+}$.
Proof. Since $B(s, w)=\frac{1}{\pi} \frac{(1+a)^{2}}{(1-\bar{a} M)^{2}} \frac{1}{(1+s)^{2}}$ and $M a=\bar{w}$, we obtain

$$
\begin{aligned}
& \int_{\mathbb{C}_{+}} \mid B\left(\bar{s},\left.\bar{w}\right|^{p}|B(\bar{w}, w)|^{-q} d \mu(\bar{w})\right. \\
= & \int_{\mathbb{C}_{+}}\left|\frac{1}{\pi} \frac{(1+\bar{a})^{2}}{(1-a M \bar{s})^{2}} \frac{1}{(1+\bar{s})^{2}}\right|^{p}\left|\frac{1}{4 \pi} \frac{(1+a)^{4}}{\left(1-|a|^{2}\right)^{2}}\right|^{-q} d \mu(M a) \\
= & \int_{\mathbb{D}}\left|\frac{1}{\pi} \frac{(1+\bar{a})^{2}}{(1-a \bar{z})^{2}} \frac{1}{(1+M \bar{z})^{2}}\right|^{p}\left|\frac{1}{4 \pi} \frac{(1+a)^{4}}{\left(1-|a|^{2}\right)^{2}}\right|^{-q}\left|\frac{(-2)}{(1+a)^{2}}\right|^{2} d A(a) \\
= & \int_{\mathbb{D}}\left|\frac{1}{\pi} \frac{(1+\bar{a})^{2}}{(1-a \bar{z})^{2}} \frac{1}{\left(1+\frac{1-\bar{z}}{1+\bar{z}}\right)^{2}}\right|^{p}\left|\frac{1}{4 \pi} \frac{(1+a)^{4}}{\left(1-|a|^{2}\right)^{2}}\right|^{-q}\left|\frac{(-2)}{(1+a)^{2}}\right|^{2} d A(a) \\
= & \int_{\mathbb{D}}\left|\frac{1}{\pi} \frac{(1+\bar{a})^{2}}{(1-a \bar{z})^{2}} \frac{(1+\bar{z})^{2}}{(1+\bar{z}+1-\bar{z})^{2}}\right|^{p}\left|\frac{1}{4 \pi} \frac{(1+a)^{4}}{\left(1-|a|^{2}\right)^{2}}\right|^{-q}\left|\frac{(-2)}{(1+a)^{2}}\right|^{2} d A(a) \\
= & \int_{\mathbb{D}}\left|\frac{1}{4 \pi} \frac{(1+\bar{a})^{2}(1+\bar{z})^{2}}{(1-a \bar{z})^{2}}\right|^{p}\left|\frac{1}{4 \pi} \frac{(1+a)^{4}}{\left(1-|a|^{2}\right)^{2}}\right|^{-q}\left|\frac{(-2)}{(1+a)^{2}}\right|^{2} d A(a)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{1}{4 \pi}\right)^{p-q} 2^{2}|1+\bar{z}|^{2 p} \int_{\mathbb{D}}\left|\frac{1}{(1-\bar{a} z)^{2}}\right|^{p}\left|\frac{1}{\left(1-|a|^{2}\right)^{2}}\right|^{-q}|1+a|^{-4 q-4}|1+\bar{a}|^{2 p} d A(a) \\
& =\left(\frac{1}{4 \pi}\right)^{p-q} 2^{2}|1+\bar{z}|^{2 p} \int_{\mathbb{D}}|K(z, a)|^{p}|K(a, a)|^{-q}|1+a|^{-4 q-4}|1+\bar{a}|^{2 p} d A(a) \\
& \leq \frac{4}{(4 \pi)^{p-q}} 2^{2 p} 2^{2 p} 2^{-4 q-4} \int_{\mathbb{D}}|K(z, a)|^{p}|K(a, a)|^{-q} d A(a) \\
& \leq \frac{1}{4}\left(\frac{4}{\pi}\right)^{p-q} \int_{\mathbb{D}}|K(z, a)|^{p}|K(a, a)|^{-q} d A(a)
\end{aligned}
$$

From [3], we obtain

$$
\int_{\mathbb{C}_{+}}|B(\bar{s}, \bar{w})|^{p}|B(\bar{w}, w)|^{-q} d \mu(\bar{w}) \leq C \frac{1}{4}\left(\frac{4}{\pi}\right)^{p-q} K(z, z)^{p-q-1}
$$

for some constant C. Let $C_{1}=C \frac{1}{4}\left(\frac{4}{\pi}\right)^{p-q}$. Then

$$
\begin{aligned}
& \int_{\mathbb{C}_{+}}|B(\bar{s}, \bar{w})|^{p}|B(\bar{w}, w)|^{-q} d \mu(\bar{w}) \leq C_{1} K(z, z)^{p-q-1}=C_{1} K_{z}(z)^{p-q-1} \\
& =C_{1}\left\langle K_{z}, K_{z}\right\rangle^{p-q-1}=C_{1}\left\|K_{z}\right\|^{2(p-q-1)}\left\langle\frac{K_{z}}{\left\|K_{z}\right\|}, \frac{K_{z}}{\left\|K_{z}\right\|}\right\rangle^{p-q-1} \\
& =C_{2}\left\langle k_{z}, k_{z}\right\rangle^{p-q-1} \text { where } C_{2}=C_{1}\left\|K_{z}\right\|^{2(p-q-1)} .
\end{aligned}
$$

Thus, if $z=M \bar{s}$, then

$$
\begin{aligned}
\int_{\mathbb{C}_{+}}|B(\bar{s}, \bar{w})|^{p}|B(\bar{w}, w)|^{-q} d \mu(\bar{w}) & \leq C_{2}\left(\frac{\left\|K_{z}\right\|^{2}}{\left\|B_{\bar{s}}\right\|^{2}}|B(\bar{s}, s)|\right)^{p-q-1} \\
& =C_{3}|B(\bar{s}, s)|^{p-q-1},
\end{aligned}
$$

where $C_{3}=C_{2} \frac{\left\|K K_{z}\right\|^{2(p-q-1)}}{\left\|B_{\bar{s}}\right\|^{2(p-q-1)}}$. This complete the proof.

Lemma 4. Let $s, w \in \mathbb{C}_{+}$, and $w=M \bar{a}$. Then $|B(\bar{s}, \bar{w})|=|B(\bar{w}, \bar{s})|$.
Proof. Let $s, w \in \mathbb{C}_{+}$and $w=M \bar{a}$. Since $B(s, w)=\frac{1}{\pi} \frac{1}{(1-\bar{a} M s)^{2}} \frac{(1+a)^{2}}{(1+s)^{2}}$, we
obtain

$$
\begin{aligned}
B(\bar{s}, \bar{w}) & =\frac{1}{\pi} \frac{1}{(1-a M \bar{s})^{2}} \frac{(1+M w)^{2}}{(1+\bar{s})^{2}}=\frac{1}{\pi} \frac{\frac{(1+w+1-w)^{2}}{(1+w)^{2}}}{\left(1-a \frac{1-\bar{s}}{1+\bar{s}}\right)^{2}} \frac{1}{(1+\bar{s})^{2}} \\
& =\frac{4}{\pi} \frac{1}{(1+w)^{2}} \frac{(1+\bar{s})^{2}}{(1+\bar{s}-a+a \bar{s})^{2}} \frac{1}{(1+\bar{s})^{2}}=\frac{4}{\pi} \frac{1}{(1+w)^{2}} \frac{1}{(1-a+\bar{s}(1+a))^{2}} \\
& =\frac{4}{\pi} \frac{1}{(1+w)^{2}} \frac{1}{(1+a)^{2}\left(\frac{1-a}{1+a}+\bar{s}\right)^{2}}=\frac{4}{\pi} \frac{1}{(1+w)^{2}} \frac{1}{(1+a)^{2}(\bar{s}+\bar{w})^{2}} \\
& =\frac{4}{\pi} \frac{1}{(1+w)^{2}} \frac{1}{(1+M \bar{w})^{2}(\bar{s}+\bar{w})^{2}}=\frac{4}{\pi} \frac{(1+\bar{w})^{2}}{4(1+w)^{2}} \frac{1}{(\bar{s}+\bar{w})^{2}} \\
& =\frac{1}{\pi}\left(\frac{1+\bar{w}}{1+w}\right)^{2} \frac{1}{(\bar{s}+\bar{w})^{2}} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
B(\bar{w}, \bar{s}) & =\frac{4}{\pi} \frac{1}{(1+s)^{2}} \frac{1}{(1+M \bar{s})^{2}(\bar{s}+\bar{w})^{2}}=\frac{4}{\pi} \frac{1}{(1+s)^{2}} \frac{1}{(\bar{s}+\bar{w})^{2}} \frac{1}{\left(1+\frac{1-\bar{s}}{1+\bar{s}}\right)^{2}} \\
& =\frac{4}{\pi} \frac{1}{(1+s)^{2}} \frac{1}{(\bar{s}+\bar{w})^{2}} \frac{(1+\bar{s})^{2}}{4}=\frac{1}{\pi} \frac{(1+\bar{s})^{2}}{(1+s)^{2}} \frac{1}{(\bar{s}+\bar{w})^{2}} .
\end{aligned}
$$

Thus $|B(\bar{s}, \bar{w})|=|B(\bar{w}, \bar{s})|$ for all $s, w \in \mathbb{C}_{+}$.

4 Integral operator

In this section, we introduce the operators Q_{1} and \mathcal{V}_{1} and prove that these operators are bounded on $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$. For $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ and $s \in \mathbb{C}_{+}$, we define

$$
Q_{1} \phi(s)=3 \int_{\mathbb{C}_{+}} \frac{|B(\bar{s}, \bar{w})|^{2}}{|B(\bar{w}, w)|} \phi(w) d \mu(w)
$$

and

$$
\mathcal{V}_{1} \phi(w)=3 \int_{\mathbb{C}_{+}} \frac{|B(\bar{s}, \bar{w})|^{2}}{|B(\bar{w}, w)|} \phi(s) d \mu(s) .
$$

Proposition 2. The operators Q_{1} and \mathcal{V}_{1} are bounded on $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$.

Proof. Notice that the boundedness of Q_{1} follows from the boundedness of \mathcal{V}_{1}. Thus we only show that Q_{1} is a bounded operator on $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$. Take $t>0$ and let $h(s)=|B(\bar{s}, s)|^{t}$. Then by Lemma 3 and Lemma 4 , we obtain

$$
\begin{align*}
\int_{\mathbb{C}_{+}} \frac{|B(\bar{s}, \bar{w})|^{2}}{|B(\bar{w}, w)|} h(s) d \mu(s) & =|B(\bar{w}, w)|^{-1} \int_{\mathbb{C}_{+}}|B(\bar{s}, \bar{w})|^{2}|B(\bar{s}, s)|^{t} d \mu(s) \\
& =|B(\bar{w}, w)|^{-1} \int_{\mathbb{C}_{+}}|B(\bar{w}, \bar{s})|^{2}|B(\bar{s}, s)|^{t} d \mu(s) \\
& \leq|B(\bar{w}, w)|^{-1} C|B(\bar{w}, w)|^{2+t-1} \\
& =C|B(\bar{w}, w)|^{t}=C h(w) \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
\int_{\mathbb{C}_{+}} \frac{|B(\bar{s}, \bar{w})|^{2}}{|B(\bar{w}, w)|} h(w) d \mu(w) & =\int_{\mathbb{C}_{+}}|B(\bar{s}, \bar{w})|^{2}|B(\bar{w}, w)|^{t}|B(\bar{w}, w)|^{-1} d \mu(w) \\
& =\int_{\mathbb{C}_{+}}|B(\bar{s}, \bar{w})|^{2}|B(\bar{w}, w)|^{t-1} d \mu(w) \\
& \leq C B(\bar{s}, s)^{2+t-1-1}=C B(\bar{s}, s)^{t}=C h(s) \tag{2}
\end{align*}
$$

for some constant $C>0$. From Schur's theorem [7], it follows that Q_{1} is a bounded operator on $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$. Moreover (1) and (2) also yield the boundedness of \mathcal{V}_{1}.

The boundedness of Q_{1} or \mathcal{V}_{1} on $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ enables us to use Fubini's theorem [5]. Let $\phi, g \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$. Then

$$
\begin{align*}
\left\langle\mathcal{V}_{1} \phi, g\right\rangle & =\int_{\mathbb{C}_{+}}\left(3 \int_{\mathbb{C}_{+}} \frac{|B(\bar{s}, \bar{w})|^{2}}{|B(\bar{w}, w)|} \phi(s) d \mu(s)\right) \overline{g(w)} d \mu(w) \\
& =\int_{\mathbb{C}_{+}}\left(3 \int_{\mathbb{C}_{+}} \frac{\mid B\left(\bar{w},\left.\bar{s}\right|^{2}\right.}{|B(\bar{w}, w)|} g(w) d \mu(w)\right) \phi(s) d \mu(s) \\
& =\left\langle\phi, Q_{1} g\right\rangle \tag{3}
\end{align*}
$$

where the second equality of (3) follows from Fubini's theorem because

$$
\begin{gathered}
3 \int_{\mathbb{C}_{+}} \int_{\mathbb{C}_{+}}\left|\frac{B(\bar{w}, \bar{s})^{2}}{B(\bar{w}, w)} \phi(s) g(w)\right| d \mu(s) d \mu(w) \\
\leq\left\|Q_{1}\right\|\|g\|\|\phi\|<\infty
\end{gathered}
$$

Therefore, the adjoint operator of \mathcal{V}_{1} on $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ is equal to Q_{1}.

Lemma 5. For $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$,

$$
\int_{\mathbb{C}_{+}} f(w) \overline{\phi(w)} d \mu(w)=\int_{\mathbb{C}_{+}} f(w) \overline{\mathcal{V}_{1} \phi(w)} d \mu(w)
$$

for all $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$.
Proof. As $Q_{1} f=f$ for $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$, we have

$$
\int_{\mathbb{C}_{+}} f(w) \overline{\phi(w)} d \mu(w)=\left\langle Q_{1} f, \phi\right\rangle=\left\langle f, \mathcal{V}_{1} \phi\right\rangle=\int_{\mathbb{C}_{+}} f(w) \overline{\mathcal{V}_{1} \phi(w)} d \mu(w)
$$

5 Little Hankel operators

In this section, we establish that if $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$, then the little Hankel operator $\hbar_{\bar{\phi}}$ is bounded if and only if $\left(\mathcal{V}_{1} \phi\right)(w)$ is bounded in \mathbb{C}_{+}. Let $H^{\infty}\left(\mathbb{C}_{+}\right)$be the space of bounded analytic functions on \mathbb{C}_{+}. It is not difficult to verify that $H^{\infty}\left(\mathbb{C}_{+}\right)=W H^{\infty}(\mathbb{D})$ and $H^{\infty}\left(\mathbb{C}_{+}\right)$is dense in $L_{a}^{2}\left(\mathbb{C}_{+}\right)$.
Proposition 3. If $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$, then $\hbar_{\bar{\phi}}=\hbar_{\overline{P_{+} \phi}}$ in the sense that $\hbar_{\bar{\phi}} g=$ $\hbar_{\overline{P_{+} \phi}} g$ for all $g \in H^{\infty}\left(\mathbb{C}_{+}\right)$.
Proof. Let $h \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and $g \in H^{\infty}\left(\mathbb{C}_{+}\right)$. Then

$$
\begin{aligned}
\left\langle\hbar_{\bar{\phi}} g, \bar{h}\right\rangle & =\left\langle\bar{P}_{+}(\bar{\phi} g), \bar{h}\right\rangle=\langle\bar{\phi} g, \bar{h}\rangle=\langle g h, \phi\rangle \\
& =\left\langle g h, P_{+} \phi\right\rangle=\left\langle\overline{P_{+} \phi} g, \bar{h}\right\rangle=\left\langle\overline{P_{+} \phi} g, \bar{P}_{+} \bar{h}\right\rangle \\
& =\left\langle\bar{P}_{+}\left(\overline{P_{+} \phi} g\right), \bar{h}\right\rangle=\left\langle\hbar_{\overline{P_{+} \phi}} g, \bar{h}\right\rangle .
\end{aligned}
$$

Hence $\hbar_{\bar{\phi}} g=\hbar_{\overline{P_{+} \phi}} g$ for all $g \in H^{\infty}\left(\mathbb{C}_{+}\right)$.
Lemma 6. Let $G(s) \in L^{\infty}\left(\mathbb{C}_{+}\right)$. Then the little Hankel operator $\boldsymbol{\Gamma}_{G}$ determined on $L_{a}^{2}\left(\mathbb{C}_{+}\right)$by G is equivalent to the little Hankel operator Γ_{ϕ} determined on $L_{a}^{2}(\mathbb{D})$ by the function $\phi(z)=\left(\frac{1+\bar{z}}{1+z}\right)^{2} G(M z)$.
Proof. Notice that the sequence of vectors $\left\{\sqrt{n+1} z^{n}\right\}_{n=0}^{\infty}$ forms an orthonormal basis for $L_{a}^{2}(\mathbb{D})$. Then

$$
\begin{aligned}
\boldsymbol{\Gamma}_{G}\left(W\left(\sqrt{n+1} z^{n}\right)\right) & =P_{+}\left(G \mathcal{J}\left(\frac{2}{\sqrt{\pi}}\left(\frac{1-s}{1+s}\right)^{n} \frac{1}{(1+s)^{2}} \sqrt{n+1}\right)\right) \\
& =W P W^{-1}\left(G(s) \frac{2}{\sqrt{\pi}}\left(\frac{1-\bar{s}}{1+\bar{s}}\right)^{n} \frac{1}{(1+\bar{s})^{2}} \sqrt{n+1}\right) \\
& =W \Gamma_{\left(\frac{1+\bar{z}}{1+z}\right)^{2} G(M z)}\left(\sqrt{n+1} z^{n}\right) \text { for all } n \geq 0 .
\end{aligned}
$$

Thus $\boldsymbol{\Gamma}_{G}$ is unitarily equivalent to Γ_{ϕ} where $\phi(z)=\left(\frac{1+\bar{z}}{1+z}\right)^{2} G(M z)$. The result follows.

Proposition 4. If $\phi \in L^{\infty}\left(\mathbb{C}_{+}\right)$, then $\hbar_{\bar{\phi}} W=W h_{\bar{\phi} \circ M}$.
Proof. For $\phi \in L^{\infty}\left(\mathbb{C}_{+}\right)$, notice that $\hbar_{\phi}=\mathcal{J} \mathcal{S}_{\phi}$ and $\boldsymbol{\Gamma}_{\phi}=\mathcal{S}_{\mathcal{J} \phi}$, where \mathcal{J} is the mapping from $L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ into itself defined by $\mathcal{J} f(s)=f(\bar{s})$. Then from Lemma (6), we obtain

$$
W^{-1} \mathcal{J} \hbar_{\mathcal{J} \bar{\phi}} W=J h_{J\left(\left(\frac{1+\bar{z}}{1+z}\right)^{2}(\bar{\phi} \circ M)(z)\right)}
$$

Hence

$$
\left(W^{-1} \mathcal{J} W\right)\left(W^{-1} \hbar_{\mathcal{J} \bar{\phi}} W\right)=J h_{J\left(\left(\frac{1+\bar{z}}{1+\bar{z}}\right)^{2}(\bar{\phi} \circ M)(z)\right)^{2} .} .
$$

Thus

$$
\left.\left.J\left[J\left(W^{-1} \hbar_{\mathcal{J} \bar{\phi}} W\right)\right]=J\left(J h_{J((1+\bar{z}}^{1+z}\right)^{2}(\bar{\phi} \circ M)\right)(z)\right) .
$$

Therefore

$$
W^{-1} \hbar_{\mathcal{J} \bar{\phi}} W=h_{J\left(\left(\frac{1+\bar{z}}{1+z}\right)^{2}(\bar{\phi} \circ M)(z)\right)}
$$

Hence

$$
\begin{equation*}
\hbar_{\mathcal{J} \bar{\phi}} W=W h_{J(u(\bar{\phi} \circ M))} \tag{4}
\end{equation*}
$$

where $u(z)=\left(\frac{1+\bar{z}}{1+z}\right)^{2}=J\left(M^{\prime} \circ M\right)(z) M^{\prime}(z)$. Now from (4), it follows that

$$
\begin{equation*}
\hbar_{\bar{\phi}} W=W h_{J(u(\mathcal{J} \bar{\phi} \circ M))} \tag{5}
\end{equation*}
$$

Now

$$
J u=J\left(J\left(M^{\prime} \circ M\right) M^{\prime}\right)=\left(M^{\prime} \circ M\right) J M^{\prime}
$$

Hence

$$
(J u \circ M)=\left(M^{\prime} \circ M \circ M\right)\left(J M^{\prime} \circ M\right)=M^{\prime}\left(J\left(M^{\prime} \circ M\right)\right)
$$

Thus

$$
\begin{align*}
(J u)(J u \circ M) & =\left(M^{\prime} \circ M\right)\left(J M^{\prime}\right) M^{\prime}\left(J\left(M^{\prime} \circ M\right)\right) \\
& =\left(M^{\prime} \circ M\right) M^{\prime} J\left[\left(M^{\prime} \circ M\right) M^{\prime}\right]=1 . \tag{6}
\end{align*}
$$

Further notice that

$$
W^{-1} \bar{\phi}=(-1) \sqrt{\pi}(\bar{\phi} \circ M) M^{\prime}
$$

Hence

$$
J\left(W^{-1} \bar{\phi}\right)=(-1) \sqrt{\pi}(J \bar{\phi} \circ M)\left(J M^{\prime}\right)
$$

This implies

$$
W J W^{-1} \bar{\phi}=(-1) \sqrt{\pi} \frac{(-1)}{\sqrt{\pi}}(J \bar{\phi})\left(J M^{\prime} \circ M\right) M^{\prime}=(J \bar{\phi})\left(J\left(M^{\prime} \circ M\right)\right) M^{\prime}
$$

Thus

$$
\mathcal{J} \bar{\phi}=W J W^{-1} \bar{\phi}=u(J \bar{\phi})
$$

Hence

$$
(\mathcal{J} \bar{\phi}) \circ M=(u \circ M)(J \bar{\phi} \circ M)=(u \circ M) J(\bar{\phi} \circ M)
$$

Therefore

$$
\begin{aligned}
J((\mathcal{J} \bar{\phi}) \circ M) & =(J(u \circ M))(J J(\bar{\phi} \circ M)) \\
& =(J(u \circ M))(\bar{\phi} \circ M) \\
& =((J u) \circ M)(\bar{\phi} \circ M)
\end{aligned}
$$

Form (5), we obtain

$$
\begin{aligned}
\hbar_{\bar{\phi}} W & =W h_{J(u(\mathcal{J} \bar{\phi} \circ M))}=W h_{(J u)(J(\mathcal{J} \bar{\phi} \circ M))} \\
& =W h_{J u[(J u \circ M)(\bar{\phi} \circ M)]}=W h_{[(J u)(J u \circ M)](\bar{\phi} \circ M)}
\end{aligned}
$$

From (6), it follows that $\hbar_{\bar{\phi}} W=W h_{\bar{\phi} \circ M}$.
For $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$, it is not difficult to show that $\left(\mathcal{V}_{1} \phi\right)(w)=3\left\langle\bar{b}_{\bar{w}}, \hbar_{\bar{\phi}} b_{\bar{w}}\right\rangle$. For $z \in \mathbb{D}, f \in L^{2}(\mathbb{D}, d A)$, define

$$
(V f)(z)=3\left(1-|z|^{2}\right)^{2} \int_{\mathbb{D}} \frac{f(w)}{(1-z \bar{w})^{4}} d A(w)
$$

Proposition 5. Let $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$, then $\left(\mathcal{V}_{1} \phi\right)(w)=V(\phi \circ M)(a)$, for all $a \in \mathbb{D}$.

Proof. Let $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ and $w=M \bar{a}, a \in \mathbb{D}, w \in \mathbb{C}_{+}$. Then

$$
\begin{aligned}
\mathcal{V}_{1} \phi(w) & =3\left\langle\overline{b_{\bar{w}}}, \hbar_{\bar{\phi}} b_{\bar{w}}\right\rangle=3\left\langle\overline{W k_{a}}, \hbar_{\bar{\phi}} W k_{a}\right\rangle=3\left\langle W \overline{k_{a}}, \hbar_{\bar{\phi}} W k_{a}\right\rangle \\
& =3\left\langle\overline{k_{a}}, W^{-1} \hbar_{\bar{\phi}} W k_{a}\right\rangle=3\left\langle\overline{k_{a}}, h_{\bar{\phi} \circ M} k_{a}\right\rangle=3\left\langle\overline{k_{a}}, h_{\overline{\phi \circ M}} k_{a}\right\rangle \\
& =V(\phi \circ M)(a)
\end{aligned}
$$

for all $a \in \mathbb{D}$.

Proposition 6. For $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$,
(i) $\mathcal{V}_{1} P_{+}=\mathcal{V}_{1}$.
(ii) $P_{+} \mathcal{V}_{1}=P_{+}$.
(iii) $\mathcal{V}_{1}^{2}=\mathcal{V}_{1}$.

Proof. From Proposition 3, we obtain

$$
\mathcal{V}_{1} P_{+} \phi=3\left\langle\bar{b}_{\bar{w}}, \hbar_{\overline{P_{+} \phi}} b_{\bar{w}}\right\rangle=3\left\langle\bar{b}_{\bar{w}}, \hbar_{\bar{\phi}} b_{\bar{w}}\right\rangle=\mathcal{V}_{1} \phi
$$

for $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$. This proves (i). To prove (ii), let $\phi, g \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ and $g=g_{1}+g_{2}$ where $g_{1} \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and $g_{2} \in\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right)^{\perp}$. Then

$$
\begin{aligned}
\left\langle P_{+} \mathcal{V}_{1} \phi, g\right\rangle & =\left\langle\mathcal{V}_{1} \phi, P_{+} g\right\rangle=\left\langle\mathcal{V}_{1} \phi, g_{1}\right\rangle=\int_{\mathbb{C}_{+}}\left(\mathcal{V}_{1} \phi\right)(w) \overline{g_{1}(w)} d \mu(w) \\
& =\pi \int_{\mathbb{D}}\left[\left(\mathcal{V}_{1} \phi\right) \circ M\right](z) \overline{\left(g_{1} \circ M\right)(z)}\left|M^{\prime}(z)\right|^{2} d A(z) \\
& =\pi \int_{\mathbb{D}}[V(\phi \circ M)](z) \overline{\left(g_{1} \circ M\right)(z)}\left|M^{\prime}(z)\right|^{2} d A(z)
\end{aligned}
$$

Under the complex integral pairing with respect to $d A$, we have $V=P_{2}^{*}$ where $P_{2} h(z)=3 \int_{\mathbb{D}} \frac{\left(1-|u|^{2}\right)^{2}}{(1-z \bar{u})^{4}} h(u) d A(u)$ is a projection from $L^{1}(\mathbb{D}, d A)$ onto $L_{a}^{1}(\mathbb{D})$. From Fubini's theorem [5] and the fact that both P and P_{2} reproduce analytic functions it follows that $P V=P$, where P is the Bergman projection from $L^{2}(\mathbb{D}, d A)$ onto $L_{a}^{2}(\mathbb{D})$. Thus for $\phi, g \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$,

$$
\begin{aligned}
\left\langle P_{+} \mathcal{V}_{1} \phi, g\right\rangle & =\pi \int_{\mathbb{D}}[V(\phi \circ M)](z) \overline{\left(g_{1} \circ M\right)(z)}\left|M^{\prime}(z)\right|^{2} d A(z) \\
& =\pi \int_{\mathbb{D}} V\left[(\phi \circ M) M^{\prime}\right](z) \overline{\left(g_{1} \circ M\right)(z) M^{\prime}(z)} d A(z) \\
& =\int_{\mathbb{D}} V\left[(-1) \sqrt{\pi}(\phi \circ M) M^{\prime}\right](z) \overline{(-1) \sqrt{\pi}\left(g_{1} \circ M\right)(z) M^{\prime}(z)} d A(z) \\
& =\int_{\mathbb{D}} V\left(W^{-1} \phi\right)(z) \overline{\left(W^{-1} g_{1}\right)(z)} d A(z) \\
& =\left\langle V W^{-1} \phi, W^{-1} g_{1}\right\rangle=\left\langle V W^{-1} \phi, W^{-1} P_{+} g_{1}\right\rangle=\left\langle V W^{-1} \phi, P W^{-1} g_{1}\right\rangle \\
& =\left\langle P V W^{-1} \phi, W^{-1} g_{1}\right\rangle=\left\langle P W^{-1} \phi, W^{-1} g_{1}\right\rangle=\left\langle W P W^{-1} \phi, g_{1}\right\rangle \\
& =\left\langle P_{+} \phi, g_{1}\right\rangle=\left\langle P_{+}^{2} \phi, g_{1}\right\rangle=\left\langle P_{+} \phi, P_{+} g_{1}\right\rangle \\
& =\left\langle P_{+} \phi, P_{+} g\right\rangle=\left\langle P_{+}^{2} \phi, g\right\rangle=\left\langle P_{+} \phi, g\right\rangle
\end{aligned}
$$

Thus $P_{+} \mathcal{V}_{1} \phi=P_{+} \phi$ for all $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ and therefore $P_{+} \mathcal{V}_{1}=P_{+}$. This proves (ii). To prove (iii), notice that

$$
\begin{aligned}
\left(\mathcal{V}_{1}^{2} \phi\right)(w) & =\mathcal{V}_{1}\left(\mathcal{V}_{1} \phi\right)(w)=3\left\langle\bar{b}_{\bar{w}}, \hbar_{\overline{\mathcal{V}_{1}}} b_{\bar{w}}\right\rangle=3\left\langle\bar{b}_{\bar{w}}, \hbar_{\overline{P_{+} \mathcal{V}_{1} \phi}} b_{\bar{w}}\right\rangle \\
& =3\left\langle\bar{b}_{\bar{w}}, \hbar_{\overline{P_{+} \phi}} b_{\bar{w}}\right\rangle=3\left\langle\bar{b}_{\bar{w}}, \hbar_{\bar{\phi}} b_{\bar{w}}\right\rangle=\left(\mathcal{V}_{1} \phi\right)(w)
\end{aligned}
$$

for all $w \in \mathbb{C}_{+}$and $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$. Hence $\mathcal{V}_{1}^{2}=\mathcal{V}_{1}$.
Proposition 7. Let $a \in \mathbb{D}, \bar{f} \in \overline{L_{a}^{2}(\mathbb{D})}$ and $f=W^{-1} g, g \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$. Then

$$
h_{\bar{\phi} \circ M}^{*} \bar{f}(a)=c_{a}\left\langle\hbar_{\bar{\phi}}^{*} \bar{g}, B_{\bar{w}}\right\rangle,
$$

for all $g \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and for some constant c_{a}.
Proof. Let $a \in \mathbb{D}, \bar{f} \in \overline{L_{a}^{2}(\mathbb{D})}$ and $f=W^{-1} g, g \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$. Then by Lemma 2, there exists a constant $\alpha,|\alpha|=1$ such that

$$
\begin{aligned}
h_{\bar{\phi}}^{*} \bar{f}(a) & =\left\langle h_{\bar{\phi}}^{*} \bar{f}, K_{a}\right\rangle=\left\langle\bar{f}, h_{\bar{\phi}} K_{a}\right\rangle=\left\langle W \bar{f}, W h_{\bar{\phi}} K_{a}\right\rangle \\
& =\left\|K_{a}\right\|\left\langle W \bar{f}, W h_{\bar{\phi}} k_{a}\right\rangle=\left\|K_{a}\right\|\left\langle\bar{g}, W h_{\bar{\phi}} W^{-1} b_{\bar{w}}\right\rangle=\left\|K_{a}\right\|\left\langle\bar{g}, \hbar_{\bar{\phi} \circ M} b_{\bar{w}}\right\rangle \\
& =\left\|K_{a}\right\|\left\langle\hbar_{\bar{\phi} \circ M}^{*} \bar{g}, b_{\bar{w}}\right\rangle=\alpha\left\|K_{a}\right\|\left\langle\hbar_{\bar{\phi} \circ M}^{*} \bar{g}, \frac{B_{\bar{w}}}{\left\|B_{\bar{w}}\right\|}\right\rangle=\frac{\alpha\left\|K_{a}\right\|}{\left\|B_{\bar{w}}\right\|}\left\langle\hbar_{\bar{\phi} \circ M}^{*} \bar{g}, B_{\bar{w}}\right\rangle \\
& =c_{a}\left\langle\hbar_{\bar{\phi} \circ M}^{*} \bar{g}, B_{\bar{w}}\right\rangle,
\end{aligned}
$$

where $c_{a}=\frac{\alpha\left\|K_{a}\right\|}{\left\|B_{\bar{w}}\right\|}$. Thus,

$$
\hbar_{\bar{\phi} \circ M}^{*} \bar{f}(a)=c_{a}\left\langle\hbar_{\bar{\phi}}^{*} \bar{g}, B_{\bar{w}}\right\rangle .
$$

Theorem 1. Suppose $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$. Then $\hbar_{\bar{\phi}}$ is bounded if and only if $\left(\mathcal{V}_{1} \phi\right)(w)$ is bounded in \mathbb{C}_{+}and there is a constant $C>0$ such that $C^{-1}\left\|\mathcal{V}_{1} \phi\right\|_{\infty} \leq\left\|\hbar_{\bar{\phi}}\right\| \leq C\left\|\mathcal{V}_{1} \phi\right\|_{\infty}$.

Proof. Notice that $b_{\bar{w}} \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ and $\left\|b_{\bar{w}}\right\|_{2}=1$. Hence $\left|\left(\mathcal{V}_{1} \phi\right)(w)\right|=$ $3\left|\left\langle\bar{b}_{\bar{w}}, \hbar_{\bar{\phi}} b_{\bar{w}}\right\rangle\right| \leq 3| | b_{\bar{w}}\left\|_{2}\right\| \hbar_{\bar{\phi}}\| \| b_{\bar{w}}\left\|_{2}=3\right\| \mid b_{\bar{w}}\left\|_{2}^{2}\right\| \hbar_{\bar{\phi}}\|=3\| \hbar_{\bar{\phi}} \|$. Further, $\hbar_{\bar{\phi}}=$ $\hbar_{\overline{P_{+} \phi}}=\hbar_{\overline{P_{+} \mathcal{V}_{1} \phi}}=\hbar_{\overline{\mathcal{V}_{1} \phi}}$. Thus $\mathcal{V}_{1} \phi \in L^{\infty}\left(\mathbb{C}_{+}\right)$implies that $\hbar_{\bar{\phi}}$ is bounded with $\left\|\hbar_{\bar{\phi}}\right\| \leq\left\|\mathcal{V}_{1} \phi\right\|_{\infty}$. The result follows since $\hbar_{\bar{\phi}}=\hbar_{\overline{\mathcal{V}_{1} \phi}}$ for all $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$.

Theorem 2. Suppose $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ such that $\hbar_{\bar{\phi}}$ is bounded. Then

$$
\frac{1}{3} \lim _{R e w \rightarrow 0} \sup \left|\mathcal{V}_{1} \phi(w)\right| \leq\left\|\hbar_{\bar{\phi}}\right\|_{e}
$$

Proof. Consider a compact operator T from $L_{a}^{2}\left(\mathbb{C}_{+}, d \mu\right)$ to $\overline{L_{a}^{2}\left(\mathbb{C}_{+}, d \mu\right)}$ arbitarily. Since $b_{\bar{w}} \rightarrow 0$ weakly in $L_{a}^{2}\left(\mathbb{C}_{+}\right)$as Rew $\rightarrow 0$, we obtain $\left\|T b_{\bar{w}}\right\| \longrightarrow$ 0 as Rew $\rightarrow 0$. Hence,

$$
\begin{equation*}
\left\|\hbar_{\bar{\phi}}-T\right\| \geq \lim _{\text {Rew } \rightarrow 0} \sup \left\|\left(\hbar_{\bar{\phi}}-T\right) b_{\bar{w}}\right\| \geq \lim _{R e w \rightarrow 0} \sup \left\|\hbar_{\bar{\phi}} b_{\bar{w}}\right\| . \tag{7}
\end{equation*}
$$

Since (7) holds for every compact operator T, it follows that,

$$
\begin{equation*}
\left\|\hbar_{\bar{\phi}}\right\|_{e} \geq \lim _{R e w \rightarrow 0} \sup \left\|\hbar_{\bar{\phi}} b_{\bar{w}}\right\| . \tag{8}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\left|\left(\mathcal{V}_{1} \phi\right)(w)\right|=3\left|\left\langle b_{\bar{w}}, \hbar_{\bar{\phi}} b_{\bar{w}}\right\rangle\right| \leq 3| | \hbar_{\bar{\phi}} b_{\bar{w}} \| . \tag{9}
\end{equation*}
$$

From (8) and (99), the theorem follows.

6 Main Result

In this section, we give estimates for the essential norm of bounded little Hankel operators on the Bergman space $L_{a}^{2}\left(\mathbb{C}_{+}, d \mu\right)$ in terms of the function $\mathcal{V}_{1} \phi$ and applications of the result are also derived. Assume that \hbar_{ϕ} is bounded operator from $L_{a}^{2}\left(\mathbb{C}_{+}, d \mu\right)$ to $\overline{L_{a}^{2}\left(\mathbb{C}_{+}, d \mu\right)}$. The following holds:

Theorem 3. Suppose $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$ and $\hbar_{\bar{\phi}}$ is bounded. Then

$$
\left\|\hbar_{\bar{\phi}}\right\|_{e} \leq C \lim _{\text {Rew } \rightarrow 0} \sup \left|\mathcal{V}_{1} \phi(w)\right| .
$$

Proof. For $f \in \overline{L_{a}^{2}(\mathbb{D})}$ and $0<r<1$, define

$$
F_{r} f(z)=\int_{\mathbb{D}}\left(\int_{r \mathbb{D}} \frac{1}{(1-z \bar{u})^{2}} \frac{1}{(1-v \bar{u})^{2}} V \phi(u) d A(u)\right) f(v) d A(v) .
$$

Then $P F_{r}$ is a compact operator from $\overline{L_{a}^{2}(\mathbb{D})}$ to $L_{a}^{2}(\mathbb{D})$ because

$$
\begin{aligned}
& \int_{\mathbb{D}} \int_{\mathbb{D}}\left|\int_{r \mathbb{D}} \frac{1}{(1-z \bar{u})^{2}} \frac{1}{(1-v \bar{u})^{2}} V \phi(u) d A(u)\right|^{2} d A(z) d A(v) \\
& \leq\|V \phi\|_{\infty}^{2} \int_{r \mathbb{D}} \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{1}{|1-z \bar{u}|^{4}} \frac{1}{|1-v \bar{u}|^{4}} d A(z) d A(v) d A(u)
\end{aligned}
$$

$$
=\|V \phi\|_{\infty}^{2} \int_{r \mathbb{D}} \frac{1}{\left(1-|u|^{2}\right)^{2}} d A(u)<\infty
$$

and the result follows from Theorem 3.5 in [7]. Thus, we have

$$
\left\|h_{\bar{\phi}}\right\|_{e}=\left\|h_{\bar{\phi}}^{*}\right\|_{e}=\left\|h_{\bar{\phi}}^{*}-P F_{r}\right\|_{e} \leq\left\|h_{\bar{\phi}}^{*}-P F_{r}\right\|
$$

Moreover, $P h_{\frac{*}{\phi}}^{*}=h_{\frac{*}{\phi}}^{*}$ yields,

$$
\begin{aligned}
\left\|h_{\frac{*}{\phi}}^{*}-P F_{r}\right\| & =\sup _{f \in \overline{L_{a}^{2}(\mathbb{D})}} \frac{\left\|P h_{\frac{*}{\phi}} f-P F_{r} f\right\|}{\|f\|} \\
& \leq \sup _{f \in \overline{L_{a}^{2}(\mathbb{D})}} \frac{\| h_{\frac{*}{\phi} f-F_{r} f \|}^{\|f\|}}{}
\end{aligned}
$$

Define

$$
K_{r}(z, v)=\int_{\mathbb{D} / r \mathbb{D}} \frac{1}{(1-z \bar{u})^{2}} \frac{1}{(1-v \bar{u})^{2}} V \phi(u) d A(u)
$$

and $K_{r}^{+}(z, v)=\left|K_{r}(z, v)\right|$. Let G_{r} (respectively G_{r}^{+}) be the integral operator on $L^{2}(\mathbb{D}, d A)$ with kernel $K_{r}\left(\right.$ respectively $\left.K_{r}^{+}\right)$. Then $G_{r} f=h_{\bar{\phi}}^{*} f-F_{r} f$ for any $f \in \overline{L_{a}^{2}(\mathbb{D})}$. For details see [7]. Thus

$$
\left\|h_{\bar{\phi}}\right\|_{e} \leq\left\|G_{r}^{+}\right\|
$$

Using Schur's theorem, we will obtain the operator norm of G_{r}^{+}on $L^{2}(\mathbb{D}, d A)$. Take $t>0$ and $h(z)=\frac{1}{\left(1-|z|^{2}\right)^{2 t}}$. Then we have,

$$
\begin{aligned}
& \int_{\mathbb{D}} K_{r}^{+}(z, v) h(v) d A(v) \\
& =\int_{\mathbb{D}}\left|\int_{\mathbb{D} / r \mathbb{D}} \frac{1}{(1-z \bar{u})^{2}} \frac{1}{(1-v \bar{u})^{2}} V \phi(u) d A(u)\right| \frac{1}{\left(1-|v|^{2}\right)^{2 t}} d A(v) \\
& \leq\left(\sup _{r<|u|<1}|V \phi(u)|\right) \int_{\mathbb{D}} \int_{\mathbb{D} / r \mathbb{D}}\left|\frac{1}{(1-z \bar{u})^{2}} \frac{1}{(1-v \bar{u})^{2}}\right| \frac{1}{\left(1-|v|^{2}\right)^{2 t}} d A(u) d A(v)
\end{aligned}
$$

Since

$$
\begin{aligned}
& \int_{\mathbb{D}} \int_{\mathbb{D} / r \mathbb{D}}\left|\frac{1}{(1-z \bar{u})^{2}} \frac{1}{(1-v \bar{u})^{2}}\right| \frac{1}{\left(1-|v|^{2}\right)^{2 t}} d A(u) d A(v) \\
& \leq \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{1}{|1-v \bar{u}|^{2}} \frac{1}{\left(1-|v|^{2}\right)^{2 t}} \frac{1}{|1-z \bar{u}|^{2}} d A(v) d A(u) \\
& \leq C h(z)
\end{aligned}
$$

we obtain from [3] that,

$$
\int_{\mathbb{D}} K_{r}^{+}(z, v) h(v) d A(v) \leq C\left(\sup _{r<|u|<1}|V \phi(u)|\right) h(z) .
$$

Thus using Schur's theorem [7], we have

$$
\left\|G_{r}^{+}\right\| \leq C \sup _{r<|u|<1}|V \phi(u)| .
$$

Thus

$$
\left\|h_{\bar{\phi}}\right\|_{e} \leq C \sup _{r<|u|<1}|V \phi(u)|,
$$

for any $0<r<1$. Letting $r \rightarrow 1$, we obtain

$$
\left\|h_{\bar{\phi}}\right\|_{e} \leq C \lim _{u \rightarrow \partial \mathbb{D}} \sup |V \phi(u)| .
$$

Hence

$$
\begin{aligned}
\left\|\hbar_{\bar{\phi}}\right\|_{e} & =\inf \left\{\left\|\hbar_{\bar{\phi}}-T\right\|: T \text { is compact }\right\} \\
& =\inf \left\{\left\|W^{-1} \hbar_{\bar{\phi}} W-W^{-1} T W\right\|: T \text { is compact }\right\} \\
& =\left\{\left\|h_{\bar{\phi} \circ M} W-L\right\|: L \text { is compact in } \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)\right\} \\
& =\left\|h_{\bar{\phi} \circ M}\right\|_{e} \\
& \leq C \lim _{a \rightarrow \partial \mathbb{D}} \sup |V(\phi \circ M)(a)|=C \lim _{R e w \rightarrow 0} \sup \left|\left(\mathcal{V}_{1} \phi\right)(w)\right| .
\end{aligned}
$$

Corollary 1. Let $\phi \in L^{2}\left(\mathbb{C}_{+}, d \mu\right)$. Then $\hbar_{\bar{\phi}}$ is a compact operator from $L_{a}^{2}\left(\mathbb{C}_{+}, d \mu\right)$ to $\overline{L_{a}^{2}\left(\mathbb{C}_{+}, d \mu\right)}$ if and only if $\mathcal{V}_{1} \phi(w) \rightarrow 0$ as Rew $\rightarrow 0$.

Proof. Suppose $\hbar_{\bar{\phi}}$ is compact. Since $\hbar_{\bar{\phi}}$ is bounded and $\left\|\hbar_{\bar{\phi}}\right\|_{e}=0$. It thus follows from Theorem 2, that $\lim \sup \left|\mathcal{V}_{1} \phi(w)\right|=0$. That is, $\mathcal{V}_{1} \phi(w) \rightarrow 0$ as Rew $\rightarrow 0$. On the other hand, $\stackrel{\mathcal{V}}{1} \boldsymbol{R e w}(w) \rightarrow 0$ and since $\mathcal{V}_{1} \phi$ is a continuous functions, we obtain that $\mathcal{V}_{1} \phi$ is bounded. Therefore, $\hbar_{\bar{\phi}}$ is bounded. Hence, from Theorem 3, we obtain $\left\|\hbar_{\bar{\phi}}\right\|_{e}=0$. Thus $\hbar_{\bar{\phi}}$ is compact.

References

[1] Conway, J.B., Subnormal Operators, Pitman Research Notes in Mathematics 51, Boston-London, 1981.
[2] Elliott, S., and Wynn A., Composition operators on weighted Bergman spaces of a half plane, Proc. Edinb. Math. Soc. 54(2011), 373-379.
[3] Hedenmalm, H., Korenblum, B. and Zhu, K., Theory of Bergman Spaces, Graduate Text in Mathematics 199, Springer Verlang, New York, 2000.
[4] Lin, P., Rochberg, R. The essential norm of Hankel operator on the Bergman space, Integr. Equ. Oper. Theory. 17(1993), 361-372.
[5] Rudin, W., Principles of Mathematical Analysis, International Series in Pure and Applied Mathematics, 3rd edition, McGraw-Hill, New York, 1976.
[6] Zheng, D. Toeplitz operators and Hankel operators, Integr. Equ. Oper. Theory 12(1989), 280-299.
[7] Zhu, K., Operator Theory in Fuction Spaces, Monographs and Textbooks in Pure and Applied Mathematics 139, Marcel Dekker, New York, 1990.

[^0]: * accepted for publication in revised form on July 12, 2018
 ${ }^{\dagger}$ jitendramath0507@gmail.com P. G. Dept. of Mathematics, Utkal University, Vani Vihar, Bhubaneswar- 751004, Odisha, India
 ${ }^{\ddagger}$ namitadas $440 @ y a h o o . c o . i n ~ P . ~ G . ~ D e p t . ~ o f ~ M a t h e m a t i c s, ~ U t k a l ~ U n i v e r s i t y, ~ V a n i ~ V i-~$ har, Bhubaneswar- 751004, Odisha, India

