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Abstract

In light of ideas for semigroups, fractional calculus and Banach con-
traction principle, this manuscript is mainly concerned with existence
and controllability of fractional neutral integro-differential structures
with state-dependent delay in Banach spaces. To obtain our results,
our working hypotheses are that the functions determining the equa-
tion satisfy certain Lipschitz conditions of local type which is similar
to the hypotheses [5]. Examples are presented to demonstrate the ap-
plication of the results established.
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1 Introduction

The hypothesis of semigroups of bounded linear operator is carefully re-
lated to tackling differential and integro-differential conditions in Banach
spaces. As of late, this idea has been utilized to a noteworthy kind of non-
linear differential conditions in Banach spaces. For more purposes of enthu-
siasm on this idea, we insinuate the peruser to Pazy [25]. The concept of
controllability is in accordance with the mathematical criteria of the dynam-
ical system. In respect to control theory, a dynamical system is controllable
if, with a acceptable selection of inputs, it can be influenced from any initial
state to any preferred last state in just only a certain time. The control
theory has been sufficiently created amid the most recent three decades (for
instance, see [36, 6, 21]). Nevertheless, because of the rise of fractional neu-
tral integro-differential systems (abbreviated, FNIDS) in numerous practical
designs one needs more intense improvements.

The breakthrough of fractional calculus come up new request in vital
physics, which offers incredible convoluted interest for the physicists and
mathematicians in the basic principle of fractional calculus. The fractional
differential equations (abbreviated, FDEs) were regarded as to be the signif-
icant tool, which could depict dynamical movements of real existence phe-
nomena greater exactly. For living proof, the nonlinear wavering of seismic
tremor may be fairly displayed with fractional derivatives. We will locate
the different usages of FDE in control speculation, nonlinear wavering of
quake, the fluid-dynamic site visitors version, the study of air and in pretty
much every field of technology and technological innovation. For critical as-
surances approximately fractional frameworks, it is easy to make reference
to the treatises [7, 20|, and the papers [10, 28, 1, 19, 23, 35, 3, 15, 27], and
the references cited therein. Fractional equation with delay features occur
in a few areas, for example, therapeutic and physical with state-dependent
delay (abbreviated, SDD) or non-constant delay. Nowadays, existence re-
sults of mild solutions for such issues became very appealing and numerous
researchers taking a shot at it, see for example [2, 9, 4, 11, 12, 32, 31].

The presence, controllability and different subjective and quantitative
properties of FDEs are the most propelling domain of investigation, for
example, see [8, 24, 29, 16]. As of late, Carvalho dos Santos et al. [11]
analyzed the existence of solutions for fractional integro-differential equa-
tion with SDD in Banach spaces. Sakthivel et al. [29] cooperate with the
approximate controllability of fractional neutral stochastic model with in-
finite delay by put on the payroll expropriate fixed point techniques. In
[24, 16], the writers offer adequate circumstances for the stochastic differ-
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ential models with infinite delay. Lately, Benchohra et al. [4] researched
the existence of mild solutions on a compact interval for fractional integro-
differential equation with SDD in Banach spaces. However, existence results
for FNIDS with SDD in 4, phase space adages have not yet been totally
inspected.

Inspired by the above mentioned papers [5, 4, 16], the principle moti-
vation behind this manuscript is to analyze the existence results for the
following model

t
CD? [u(t) - g(t“((t,m%/{) el(tvs’uc(s,us))d‘9>] = Au(t)

t t
+ 7 (t, UC(t,uz)’/ ez(t, S, u{(s,us))d‘S) + / 63(t, S, UC(S,US))dS’
0 0

tes =10,T], (1.1)
uy =<(t) € Bp, te(—0,0], (1.2)

where “D(0 < a < 1) is the Caputo’s fractional derivative of order a,
and the operator / is the infinitesimal generator of a strongly continuous
semigroup {T(¢)}+>0 in a Banach space X. F : . x %) x X — X,¢; :
Dx B = Xi=123,2={ts) e IxI:0<s<t<T}Y:
I X B xX =X, (: I x B — R are appropriate functions and Ay, is a
phase space characterized in Preliminaries.

For nearly any continuous function x signalize on (—oo, T] and any ¢t > 0,
we decide on by u; the part of %, indicate by u;(0) = u(t+6) for § < 0. Now
ut(+) speaks to the historical backdrop of the state from every 6 € (—oo, 0]
in all likelihood the current time t.

Contrary to the existing consequence, this manuscript has a few effective
elements: initially, we consist of the integral term in the non-linear term
# and present a suitable thought of mild solution of the version (1.1)-
(1.2). At that point, in light of local Lipschitz conditions of the concerned
functions, we examine the existence and controllability of mild solutions
for FNIDS with SDD of the trouble (1.1)-(1.2) beneath Banach fixed point
hypothesis, and the outcomes in [4] may be seen as the unique conditions.
And furthermore, we actualize %), phase space axioms to look at the model
(1.1)-(1.2).

We move forward as follows. Section 2 is focused on a survey of some
indispensable viewpoints that will be utilized in this work to accomplish
our key results. In Section 3 and 4, we declare and show the existence and
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controllability results by suggests of fixed point hypothesis correspondingly.
As a very last point, examples are given to demonstrate our consequences.

2 Preliminaries

In this section, we present some primary components which are required
to confirm the main results.

Let £(X) : X — X represents the Banach space of all bounded linear
operators, obtain its norm recognized as | - || z(x)-

Define the continuous functions C(.#,X) : .# — X, secure its norm
recognized as || - [lc(.rx)- As well, B, (u,X) represents the closed ball in X
with the middle at u and therefore the the distance r.

Let o7 : D(«/) — X be the infinitesimal generator of an analytic semi-
group {T(t)}+>0. Without loss of simplification, we expect that 0 € p(7).
Then it is attainable to determine the fractional power «7” for 0 < 8 < 1, as
a closed linear operator on its domain D(.27)%, being dense in X. Moreover,
the subspace D(<7)” is dense in X and the expression ||z||s = ||&/”z]|, z €
D(e/P), defines a norm on D(&7®). For 0 < a < B < 1, X5 — X, and
the imbedding is compact whenever the resolvent operator of 7 is compact.
Also for every 0 < 8 < 1, there exists Mg > 0 ensure that

| «PT(t) ||< /\;lf, 0<t<T.

With this discussion, we recall fundamental properties of fractional pow-
ers @/? from Pazy [30, 25].

It must be printed that, as soon as the delay is infinite, then we had like
to debate the theoretical phase space 4} in an exceedingly useful method.
During this manuscript, we tend to deliberate phase spaces %}, that square
measure same as delineated in [13]. So, we tend to bypass the small print.

We count on that the phase space (%, || - ||#,) could be a semi-normed
linear area of functions mapping (—oo,0] into X, and enjoyable the next
elementary adages as a results of Hale and Kato ( see case in purpose in
[17, 18, 33, 14]).

If w is continuous function from (—oo,T],7 > 0 into X, defined on .
and ug € Ay, then for every t € Z the following situations preserve:

(Py) wg is in Bp;

(P2) [lu@®)lx < Hlu

By
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(B3) |luellz, < Z1(t)sup{[lu(s)llx : 0 < s <t} +Po(t)[uol|,, where H >0
is a constant and Z;(-) : [0,+00) — [0,+00) is continuous, Zs(-) :
[0, +00) = [0, +00) is locally bounded, and %, %, are independent of
For our convenience, denote 77 = sup Z1(s), %5 = sup Za(s).
s€I s€I

Recognize the space
PBr ={u:(—00,T| - X:u € . is continuous and ug € By} .
The function || - ||, is defined as
lullzr = lsllz, +sup{llu(t)llx :t € 7}, we Br.

To stay away from the reiterations of a few definitions utilized as a part
of this paper we refer the readers: such as for the definition of the frac-
tional integral, Riemann-Liouville fractional integral operator, the general-
ized Mittag-Leffler special function, Wright-type function and the Caputo’s
derivative one can see the papers [31, 30] and the monographs [20, 26, 37].

Assume that the subsequent system

CDYu(t) = u(t) + .F(t), (2.1)
u(0) = u,

where “ D¢ and &7 are much the same as defined in (1.1)-(1.2).
By thinking the proofs as in [30, Lemma 6 and Lemma 9], we directly
define the mild solution for the model (2.1)-(2.2).

Definition 1. u is the function from & into X. Assume that u is a mild
solution of model (2.1)-(2.2) if v € C(.#,X) make happen the supporters
integral equation:

u(t) =Ta(t)ug + /t Sa(t —s)F(s)ds, te .7,
0
where
Sa(t) = a/oo 0, (0)t“IT(t0)dd and Tu(t) = /OO Ea(0)T(t6)do.
0 0

Remark 1. On the results received in the papers [31, 30, 38, 33], we clearly
see that our definition of mild solution fulfills the given model (1.1)-(1.2).
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Definition 2. [38, Definition 3.1] Let u be a function from (—oo,T] into
X said to be mild solution of the model (1.1)-(1.2) if uop = < € By, and for
t

each s € [0,t) the function /S, (t — s)¥ (tauC(t,ut)’/ el(t,s,ug(s,us))ds>
0

1s integrable and the subsequent integral equation

t
U’(t) :Ta(t) [§(0) - g(oa §(0), 0)] + £ (tv u((t,ut)a/ €1 (tv S, u((s,us))ds)
0
ssz (t—9)9 (s Ug (s, ),/ e1(8, T, Ue(ru, ))dT> ds

/ Sa(t —s)F (s U (s,u,) 62(8,7‘, UC(T7UT))dT) ds (2.4)

+/ Sa(t—s) / e3(s, T, UC(T,UT))dT) ds, teJ
0 0

is satisfied.

3 Existence Results

In this section, we consider ¢ € %, a fixed function, .# = [0,T]. To sim-
plify the writing of the text, in what follows, we assume that 0 < ((¢,¢) <t
for all ¥ € %,

Presently, we listing the subsequent hypotheses:

(H1) The continuous function ¢ : .# x A, xX — X and we can find constants
B € (0,1),71,U2 > 0 and 7] > 0 in ways that ¢ is Xg -valued and
fulfills the subsequent assumptions:

| /PG (t, 1, x) — PG (t, 09, T) |x< 71 || U1 — U2 || 3, +72llz — T,
te ja 111171/)2 Eﬁha .iU,.%'EX,

| /PG (t,9,0) ([x< 71 | ¥ |@, +75, tE€ I, ¥ € B,
where

vt = PG (t,0,0)|x.
2 Itréa}II (t,0,0)|Ix

(H2) F : I x By xX — Xis continuous and we can find constants vy, s > 0,
and v{ > 0 in a way that

|Z (t, 01, x) — F (t,902,T)||x < vilh1 — Y2z, + v2llz — Z|x,
te S, (Y1) € Bz, T €X,
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and
= F(t,0,0)|x.
8! Igéa]}(” (t,0,0)[Ix

(H3) (i) The continuous functions e; : Z x %), — X and we can observe
the positive constants &;, £ to verify that

ei(t, s, 01) — €i(t, s, 12)||x < &illr — ¥2l 3,
(t,s) € P, (d1,4n) € By i=1,2,3;

and
& = g@;\lei(t,s,o)llx, i=1,2,3.
(H4) For every r > 0, there exist constants Lg(r) > 0, Lz(r) > 0 and
L., (r) > 0, for i = 1,2, 3 such that;
(i)

177G (¢, 215, 2) — 7 °F (t, 200, y) % < Loy (r)([t2 — ta] + |1z = yllx),
z,y € X, t,t1,to € F,

(i)

[ F (t, wty, ) = F (b, 21y, 9)Ix < Lz (r)(t2 — ta] + [ — yllx),
T,y €X, tt1,ty € S,

(iii) Hei(t,s,th) — ei(t,s,ytl)HX < Le,(1)|ta — t1], t,t1,t2 € L.
(H5) The condition for the function ¢ : .# x %), — [0, 00) satisfies:

(i) For every ¢ € %y, the function ¢t — ((t,) is continuous.
(ii) There exists a constant L¢ > 0 such that

IC(t,62) — C(t,61)| < Lells2 — <1l 4y, s1,52 € By, forall te ..

(H6) The following inequalities holds:



358 P. Kalamani, D. Baleanu, S. Suganya, M.M. Arjunan

(i) Let

af
MMO[leCHQh +Pﬂ + [(ﬁl JrgQT&) (MO n Ml,ﬁf(ﬂ+ 1)T )

BT (B +1)

MTe Mo+ 1 o
53} (@1 r+ Cn) + Moﬁl + Mol/ngl

+ W(Vl + VQTEQ) + m
My_gT(B+1)T*P ., MTe
N e U vy
MTot!
+ F( )53 =T

(1oTE&5 + vy)

where ||7=#|| = Mg and for some 7 > 0.

(i) Let

A =9}

<V1 +7oTE + QLg(T)LC(l + TLe1 (T))) .

Ml—gr(,@-i-l)Taﬁ) MT>
<M° + BT (af + 1) T(a+1)

. <1/1 +19T& + 2L (r)L¢(1 + TLe, (T))>

MTa—i—l

+ m(fi’; + 2L4L63(r))] <1

be ensure that 1 > A* > 0.

Theorem 1. Suppose that the conditions (H1)-(H6) hold. At that point the
model (1.1)-(1.2) has unique mild solution in (—oo,T].

Proof. We can transmute the model (1.1)-(1.2) into a fixed-point system.
Perceive the operator Y : Br — PBr specified by

t
Ta(t)[g(o) - g(07§(0)70)] + 9 (tyug(t,ut)y/ 61(t7 svu((s,us)>d8>
0
t s
—|—/ ASo(t — 8)Y <s Ug(s,us)s / e1(s, T, uC(T7u7))d7') ds
0
+/ Sa(t —s)F (5 Ue(s,u, ),/ ea(s, T, U<(T7uT))dT> ds

ot —8) (/ e3(8, T, U¢(ru, )dT)dS te s.

0
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It is observable that the fixed points of the operator T are mild solutions
of the structure (1.1)-(1.2). The function z(-) : (—oo,T] — X is defined by

Tua(s)s(0), se .7,

then zp = ¢ and z(0) = 0 with for each function z € C(.#,R). We also
defined as 7 is characterized by

~ 0, s < 0;
#s) = {:L’(s), se s

If u(-) fulfills (2.4), we can part it as u(s) = z(s) + Z(s), that is u(s) =
z(s) + z(s), s € #, which suggests us = zs + x5, for every s € .# and also
the function x(-) satisfies

_Ta(t)g(ov Sy 0) +¥ (ta Le(t,we+zt) + Re(txetzt)

t
/ el (t7 S’ xc(svxs“l’ys) + ZC(S’IS+Z5))d8
0

t
+/ 'Q{Sa(t - S)g (37 L¢(s,xs+ys) + Rl(s,s425)s

0
s

x(t) = /0 e1(8 Ty T¢(rartzy) T Z§(77I7+ZT))(1T> ds
t

+ [ Salt = 8)F (8, %¢(s.20tye) T 2e(s20420):
0

s
eas, T, Te(rartzr) T $C(T,xf+zf))d7> ds

0

t S
+/ Sa(t —s) (/ e3(8, T T¢(rmr42r) T ZC(T@TJFZT))dT) ds.
0 0

Let 8% = {x € Br: 20 =0 € B}. Let |- ||Q% be the seminorm in %%
described by

Il . = sup [|lz()lx + [lzoll, = sup 2(®)]x, = € Bp,
tes tes

as a result (%%, || - ||,%§{ ) is a Banach space. We delimit the operator T :
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B, — 7. by

_Ta (t)g(ov S, O) +9 (tv $C(t,xt+zt) + ZC(t,xt+zt)7

t
/ €1 (t’ S, l‘((s,zs—‘,-ys) + ZC(S@S"'ZS))dS)
0
t

JySO&(t - S)g (57 xC(s,x5+ys) + ZC(s,x5+zs)a

0
(YTz)(t) = /0 e1(s, T, T¢(rwrtzr) T ZC(WTJFZT))dT) ds
t
+/O Sa(t —s)F (s, T¢(s,mstys) T 2C(s,ast2s)

(8T, T (ryprt2,) T 2e(rirt2,))dT | ds

/ Salt —s (/ e3(8: Ty T¢ (oo 4ys) T zc(s,$s+zs))d7> ds.

It is vindicated that the operator Y has a fixed point if and only if T has a
fixed point.

Remark 2. Assume that B, = {x € X : ||z|| < r} for a few r > 0. By the
conditions (P1) — (Ps), we can get the following estimates:

(i)

HxC(S,ms+ys) + Ze(s,x5425) H'%h
< HZC(s,xs-i-ys)”@h + ”ZC(sxs-&-zs)H@h

<9 sup [z(T)llx + Z3 |lzoll s, + 21 sup 12(T)ll + 23 |20l 2.,
0<7<((s,xs+25) 0<7<L(8,@s+25)

<1 sw 2z + 21 Ta®lleoll< Ol + Z2 sl 2,

<1 swp |z(7)|x + (DA MH + Z5 )52,

0<7<s
< Dir + cn,

where ¢, = (2 MH + 25)|s|| %, - From suppositions (H1)-(H5) in concert
with the earlier mentioned discussion, we sustain
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(i)

t
Hg (ta Le(t,zi+2e) + Z¢(tmetze) / 61(t7 S, T¢(s,ws+ys) + ZC(s,xs-l—zs))ds)
0 X

t
<l 7 “ Py (tyfcc(t,zﬁzt) + Zc(t,zt+zt)»/0 e1(t, 8, ¢(s,zatys) T ZC(s,ms+zs))dS)
—a/P%(t,0,0)|, + l7°%(t,0, 0)||X1

< My [Pl‘lxﬁ(t’xﬁ*zt) + ZC(t,mt+Zt)||-@h

+ U2

t
/ e1(t, 8, T¢(s,motys) T 2¢(s,matz))ds|| + VT:l
0 X

t
< Mot (27T +en) + Mo?z/ [Hel(t, 8, 8¢ (s, matys) T Z(s,matzn) — €1(E,8,0)[|
0

+ |le1(t, s,0)||x | ds + MoT]

< Mo (Dir + cn) + MoV + Moo T €1l 2¢ (1,0, 420) + 2ctmitz0 2 + &)
< Mot (D71 + ¢n) + MoTT + MoDoTE (DT + ¢) + MoD2TET,

and

t
Hg <t’ x((tth-l‘zt) + ZC(tvzt'i‘Zt)’ /0 el(t’ S, xC(Sv$s+QS) + ZC(SJS"'ZS))dS)

t
-9 (taxg(t,xt+zt) + Z((t,xt+zt)a/0 e1(t, 8, Te (s ms42s) T ZC(s,xs+zs)))

X

<

t
g <t, Le(txi42t) + ZC(t,a:t—f—zt)a/O el(ta 8y L¢(s,xs+ys) + ZC(s,xs+zs))dS>

t
-9 <taxC(t,mt+zt) + ZC(t,thth)?/o 61(t S xg(s Ts+2s) +z z¢ sm5+zs) )

t
e (t’“/‘«t,mzf) + Z(twrtz) / €1(ts 8, T¢(s,aut2) + 2¢(s,25420) )0
0

t
-9 (t,ﬂﬁg(t,xtJrzt) + ZC(t,xt—i-zt)a/O e1(t, 8, Te (s mo42s) T ZC(s,xs+zs)))
X
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t
< Mo|| P9 (t’xcu,mzt) + Z<<t,mt+zt)7/ e1(t, 8, T¢(s,0utys) T Z<<s,wé+zs))d5)
0

t

o (twcu,mm + Z<<t,zt+zt>v/ e1(ty 8, T¢(s motza) T ZC(S»“*Z“))dS)
0

X

t
+ My ﬂﬁg (t’xg(t,mmth) + ZC(t@t+2t)’/ @ (t’ S’fC(SﬁferZs) + zC(S’IS+ZS))dS>
0

t
- Py (t7x((t,zt+zt) + z((t,fﬂrzt)a/o e1(t, 8, ¢ (sm,42.) T Zg(s,szrzs)))

X
< My {ﬂllwg(t,xtﬁ,) = Zetwotzo) |2, T 72T et t20) — Tetwotz) | 20
+ Ly (NRLc |2 — Tillm, + 2T Le, (1)Ll — Tl 2, ]|
< MoZ; [71 + Pl + 2Leg (1)L (1 + TLey (1) | [ = Tl .
since
max (7))l + Z5 llzo — Tollz,

-z <9
||x<(s7$s+ys) mf(svxs""“)”‘@h’ = 0<7<((s,25+25)
< 9 -
< 77 wax z(s) - 3(s)|x

< Iillz =7l .-

(ii1) By employing the results of [29, Lemma 2.2 (iii), pp. 295] and Defi-
nition 2.2, we receive

¢
I /0 ASo(t — 8)Y (s,xc(s,$3+ys) + Z¢ (5,20 420)0
S
/ 61(877—7 Lo(rar+2zr) + ZC(77$T+Z7—))d7—) dS”X
0
t
< /0 ||;271738a(t = 5) |l zx) X {H%ﬁg (saxc(s,xsﬂ;s) + 2¢(s,m0420)

/ e1(8, T, ¢ (rz,42.) + ZC(T’ITJFZT))dT) — Mﬁg(s,o, 0)|lx + ||,5a7654(s, 0,0)|lx|ds
0
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</
0

[Vl ||x<(sv£s+y.€) + ZC(SVTS"‘ZS) ||'%h + PQ

{a/ooo 06, (0)(t — 5)* L/ PT((t — s)“&)d&}

S
/ 61(87
0

ds

L(X)

To L (rypntan) T 2 t2))AT ||y + 77

t [e%e]
< /0 OéMl—ﬁ(t - S)Qﬁil {/0 Gﬁga(ﬁ)dﬂ} [V1||$C(s,ws+ys) + Zc(s,ws-i-zs)”%h

+ Vo

—%
+ Vq
X

/ 61(57 Ty X (Tyzr+2r) + ZC(T,IT"FZT))dT ds. (31)
0

On the other hand, from [38, Lemma 3.2/, we see that

[e'e] —q B F(l + %)
and
00 5 B © 1 _ F(l-i-ﬂ)
/0 0°¢,(0)d0 = i g Cal6)d6 = it aB) (3.2)

Then utilizing the result (3.2) in (3.1), we get

_ My gT(B+ 1T
- fT(eB+1)

t
v1<@f7ﬂ +cn) + 72 / [ Hel(t, 8, T¢(s,matys) T ZC(s’rerzs))
0

—ex(ts,0)l + llex(t, 5,0)x] ds + 73

My_gT(B +1)T*?
- Br'(af +1)
Ze(toete) |80 + 6] +71]

My_sT(B + 1)To5
- pT(aB+1)

[ﬁl(.@ff + Cn) + T [€1||IC(t,It+Zt)+

[71(Zir + ca) + T [0 217 + ) + €] + 71,
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and
t
H /0 ASa(t — )4 (3’ T((s,matys) T 2C(s,mat2s)
/ e1(s, 7, T¢(ra,+2,) + Zc(f,x#zT))dT) ds
0
t
- / A Sa(t = 8)G (8,T¢(s mst20) T 2¢(s,0t20)s
0
/ 61(87 i EC(T’ET""ZT) + ZC(tvﬂct-i-Zt))dT) dSHX
0
t
< [l sae - s)leco
% [Hdﬁg <S’x<(37$s+ys) + ZC(s,ms-i-Zs)’/O ei(s,, Ti(rartz,) T ZC(T,LET-‘:-ZT))dT)
-’y <S7f”<<s7rs+zs> RECERENE /O e1(8, T, T¢(re, +2,) + Zc(T,z,m))dT)
+/7 (S’xC(svxS"‘Zs) + ZC(Sa%'f‘Zs)’/ ei(s, T, Ti(rartzr) T ZC(T,xT+z7))d7—)
0
— ﬂﬁg (S’mc(s,w5+zs) + ZC(5)§5+25)7/0 €1 (S7T7EC(7,57+ZT)+

ds

ZC(TviT +z- )) dT) HX

gl T8
M16?(O(Zill)) 1% [vl +U2Té1 + 2Ly (r)Le(1 + TLe, (r))} 12 — 2| 0.

(iv)
H—Tamﬂmsmm:H{Aw@wmwwu@gm&m
= M) P ()% (0,,0)]x

SMMﬁmwﬁ+ﬁ}

X

t
/0 Sa(t = 8)F (8, ¢(smatys) + 2¢(s,00t20)>

/ ea(s, T, Te(rartz) T ZC(T,:CT-&-ZT))dT) ds
0

S/
0

X

{a/ooo 0. (0)(t — 8)>~LT((t — s)“&)d@}

£(X)
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S
[H’g (s T¢(s,aatys) T 2C(s,mat7)s /o €2(8, Ty T¢(ra,42,) T Z<<Tvxr+zf))d7>

— F(5,0,0) |l + |7 (5,0, 0) 1| ds

T
> F(Og) |:V1Hx<(t7xt+zt) + ZC(taIt+Zt)||=%h

+ 2

t
/ ea(t, 8, T¢(s,motys) T 2c(s,a042))d8|| + VT}
0

X
MTe

S Tlatl)

t
vi(Zir +cn) + V2/ [H€2(tv 8y 8¢ (s,m0tys) T 2C(s,mat2)) — €2(6,5,0) ||y
0

+ llea(t,5,0) | ds + vi

MTe * * *
< Tlat1) [V1(917" +cn) + VQTK?”xC(t,xt-‘rzt) + 2¢(tait =) |2 + 52] + V1]

MTe

< Tla+1) [V1(@fr + n) + 1T [&(Dfr + cn) + &) + ,/T]7

and

t s
/(; Sa(t - S)y (57 Te(s,zatys) + ZC(s,mSJrzs)a/(; 62(37 Ty Xl (rywr+2r) + ZC(T,IT+ZT))dT> ds

t s
- A Sa(t - S)y <5a$C(s,m5+zS) + Z'IC(S,TSJrzSﬁ‘/0 62(8, T, fC('F,ETJrZT) + ZC(T,I-,-JrZT))dT) ds
X

<

{a/ooo 0E.(0)(t — 5)°~ T ((t — s)“@)d&}

L(X)
X || F <S7 Te(s,zstys) + ZC(s,wSJrzs)a/ 62(87 Ty Xl (rywr+2r) + ZC(T,IT+ZT))dT>
0

S

S x<(5 925+Zs) + ZC(S xs+zs)’ 62(8’ T, fC(T7xT+ZT) + ZC(T7xT+ZT))dT>

S

S xC (s,xs+25) + Z¢(s,mst2s)

A/‘\

es(s, T, Te(raotz) T ZC(T)IT+zT))dT>

S

ds
X

S $(('3 Ts+2s) + 2¢(8,Ts+2s)0

/—\
o\o\h

€2(8, T, T¢(rz, +2,) + Zc(mwzf))dT)
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M

< T
“T(a+1)
‘ t

+ L (r) <2|C(t7$t + 2¢) = C(t,T¢ 4 2¢)| 4+ 2T Le, (r) G (¢, w4 + 2¢) — C(¢, Tt + Zt)|)]

MT® _
e [0 4+ 92T + 212 () Lo (1 + TLey ()]l — 7.

t s
‘ / Sa(t — s)/ €3(8, T, T¢(rart2r) T 2¢(rwr42r))dTdS
0 0

<[ t {a [T oo 021 - o0

’ ||€3(S, Ty T (T,xr42r) + ZC(T,mT-l—zT))dTHXdS
mre
< F(a T 1) /0 [ H€3(t, S, x{(s,xs—i-ys) + Z{(s,xs-l—zs)) - 63(t7 S, O)HX

+ lles(t,5,0)|1x] s

MTa+1
< m |:€3”x<(t7$t+zt) + Z¢(txe+zt) H%h + €§:|

MTH
< Farp i+ e) &),

t s
- S(x(t - S) / 63(8, T, EC(T,ETJFZT) + ZC(T,ETJrzT))deS
0 0
t
<),
0
J

VillZetootz) — Te(taeta) B, + 12

t
/0 62(t7 57$C(s,m5+ys) + Z((s,szrzs))dS - /0 eZ(ta Safg(s,arerzs) + Z{(s,xs+zs))ds
X

<

(vi)

X

L(X)

and

t s
/ Sa (t - 5) / 63(57 Ty (T2 r+2r) + ZC(T,QZT"FZT))deS
0 0

X

{a/ooo 06, (0)(t — s)* I T((t — s)“ﬂ)d@}

L(X)

es(s, T, Te(rmrtzr) T ZC(T,wT-&-zT))
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= €3(8, T, Te(r,420) T 2c(rant2n) T €3(8 T T (rm,42,) T 2¢(r.00420))

—e3(8, T, T¢(rz,4+2) + ZC(T@TJFZT))HXdes

MTthl . _
< m-% [€3 + 2Le, (r) Lell|lz — | 9. -
At first, we show that T : B,.(0, %) — B,(0,%Y). For any z(-) € %%,
by take on Remark 3.1, we sustain

I(C2)(®) ]l < MMo [71][<]|z5, +71]

af o
+ [(71 +ﬁ2T€1) (Mo + Mlﬁ?‘];(iﬁﬁ—:_ll))T > MT (1/1 + V2T§2)

Ia+1)
MTo+H . B L MugT(B DT
n mfg] (Fir+ en) + Mo+ Mo TE} + “2 e B (2T +73)
Tagnle )+ rp®
<r.

As a consequence, T : B,.(0,%4%) — B,(0,%%). At long last, we demon-
strate that T is a contraction on B,.(0,4%%). If z,7 € B.(0,%Y), from
Remark 3.1, we support

<V1 +72T& + 2Ly (r)Le(1 + TLe, (7’)))

I(C2)(t) — (XZ)()]x < 27

af3 «a
Mgl (B + 1T > FMT (1/1 +12T& + 2Lz (r)Le(1+ TLe, (r)))

<M° + AT (af + 1) (a+1)

MTet! _ y _
+ m[ﬁs +2L¢Ley(r)] | |1z — Tl 9, < A¥[|z — T| 90.-
From the assumption (H6) and in the perspective of the contraction map-
ping principle, we understand that Y includes a unique fixed point u € ,@%

which is a mild solution of the model (1.1)-(1.2) on (—oo,T]. The proof is

now completed. O

4 Controllability Results

In this section, we present and prove that the controllability of the fol-
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lowing model

t
CD? [u(t) —9 (t’“C(t,ut)ﬂ/O e1(t, 87UC(s,us))d8>]
t
= du(t)+.F tvu((t,ut%/ ea(t, 8, Uc(su,))ds
0

t
+/ eg(t, s,uc(syus))ds + C’U(t), te 7, (4.1)
0
uo =¢(t) € By, te(—0,0], (4.2)

where C is a bounded linear operator from a Banach space U into X; the
control function v(-) € L?(.#,U), a Banach space of admissible control func-
tions. The rest of the functions are same as defined in (1.1)-(1.2).

Definition 3. [34, Definition 4.1] A function u : (—o0,T] — X is called a
mild solution of the model (4.1)-(4.2) if v € L*(F,U),uo = s € By, and for

¢

each s € [0,t) the function /Sy (t — s)¥ (taudt,uz)’/ el(t,s,uC(s,us))ds>
0

1s integrable and the following integral equation

;

=

t

[0}

t
)[g(O) - g(oa §(0), O)] +¥ <ta WU¢ (tyut)s / Gl(t, S, u((s,us))ds>
0
t s
ISy (t — )9 (s,uc(&us),/ e1(s,, uc(ﬂuT))dT) ds
0

Sa(t —s)F (s,uc(s,us),/
0

+

+
S—SS—S5—5—,

t

u(t) = + ea(s, T, UC(T#T))CZT) ds

t s

Salt — s)/ e3(8, T, U¢(r,u,))dTds
0

t

Sa(t — s)Cv(s)ds, t € &.

+

\

1$ satisfied.

Definition 4. The system (4.1)-(4.2) is said to be controllable on &, iff for
every ug = ¢ € Bn,u1 € X, there exists a control v € L*(#,U) such that
the mild solution u(-) of (4.1)-(4.2) fulfills u(T) = uy.

For the study of the structure (4.1)-(4.2), we report the further right
after hypotheses:
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(H7) The linear operator C : L*(.#,U) — LY(#,U) is bounded, W :
L*(#,U) — X defined by

T
Wo = /0 (T — 5)Sa(T — s)Bu(s)ds

has an inverse operator W1 which takes values in L?(.#,U)/ Ker W,
where the kernel space of W is defined by Ker W = {u € L?(.#,U) :
Wu = 0} and there exist two positive constants Ml, 1\72 > 0 such that
|l < My and [WY| < M.

(H6)* The following inequalities holds:
() Let

Mi_gI'(B + l)TO‘E.
Ar(af +1)

& (.@f?“ + Cn)

MMo[71lsll, + 73] + [ Mo + Mo7aT€1 +

MT MTaJrl
Tar T eTe) + v
My_gD(B+ 1)TP

AL (B + 1)

MT? * * MTaJrl *
+F(a+1)(y2T§2+yl)+F(a—|—1)£3+

(U1 +72T6) +

+ Moﬁ{ + Mo?ngik +

(7 T¢; +77)

MTe
I'a+1)

BOST,

for some 7 > 0.
(7i) Let

Mo +1) (71 + U2TE + 2L (r)Le(1 + TLe, (1))

My_gT(B + 1)Taﬁ> MT®

B (af + 1) T(a+1)
MTaJrl
I'a+1)

X (./\/lo + (v1 + 1T

+ 2L g (r)Le(1 4 TLey(r))) + (€3 +2L¢Ley (1)]| <1

be such that 0 < A** < 1.

Theorem 2. Expect that the hypotheses (H1)-(H5), (H7) and (H6)* are
fulfilled, then the model (4.1)-(4.2) is controllable in & .

Proof. Using the theory, for an arbitrary function u(-), choose the control
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function as follows:

va(t) = W [m — T (T)[s(0) — %(0,4(0),0)]

T
-9 <T, ug(TyuT),/ el(T,s,uC(s’us))ds>
0
T s
_/ I So(T — 5)9 <3,u<(s’us),/ e1(s, T, U((r,uf))d7'> ds
0 0
T s
/ Sa(T — 8).7 (‘Svuc(s,us)?/ ea(s, T, UC(TﬂJT))dT) ds (4.3)
0 0

- /OT Sa(T — s) (/08 e3(s, T, Uc(r,uf))d7> ds] (t).

Presently, we determine the operator Y : Br — Br by

=

(03

t
t)[s(0) —¥(0,¢(0),0)] + ¥ <t,u<(t7ut),/ e1(t, s,ug(s,us))ds>
0

ISy (t — 5)9 (S,Ug(s,us),/ e1(s, T, Uc(r,uf))d7'> ds
0

S

e2(8, T, U¢(r,u,) )dT) ds
0

_|_

t

(Tyu)(t) = + Sa(t —s)F (s,ua&us),

Sa(t —s) (/ es(s, T, uC(ﬁuT))dT) ds
0

Sa(t — s)Cuy(s)ds,

t
+
t

+

——

fort e 7.

Notice that the control (4.3) transfers the framework (4.1)-(1.2) from
the initial state ¢ to the last state up gave that the operator T; has a fixed
point. To affirm the exact controllability results, it is sufficient to exhibit
that the operator T has a fixed point on HAr.

By employing same techniques as in Theorem 3.1, We delimit the oper-
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ator Y1 : %’% — %’% by

_P]Eoe (t)g(07 Sy 0) +9 (tv T¢(t,wi+2t) + Re(txe+zt))

/0 el(t7 8y L¢(s,xs+ys) + ZC(s,acs-l—zs))dS)
+/0 eQ{Soz(t - S)g (37 x{(s,xs-',-ys) + zC(s,xs+zs)7

61(8, T, ¢ (rmrtzr) T ZC(zjT+ZT))dT> ds
(T12)(t) = 0

+/ Sa(t - S)y (S, Te(s,xs+ys) + R((s,ws+2s)9

€2(8, T, T¢(rmr42,) T 2¢(, zT+zT))d7'> ds

/S (t—s) [CUerz() /eg(s,T,xC(TMJFZT)

+ZC(T’zT+ZT))dT] ds.

By utilizing (4.3), we define the control function v, straightly. It is vin-
dicated that the operator T; has a fixed point if and only if T has a fixed
point.

For the convenience of concerns, we consider

|Cvar2(8)]| € MiMa | |lus || + M[|[s(0)]| + Mo (@1 [s]| 5, +7})]

af
+ |(71 +12T&) (Mo + Mlﬁi‘r(‘(%—:_ll))T )

MT Ta+1
+ m(Vl + V2T§2) ]

Ml*,@F(ﬁ + 1>Ta5 — * —% M
BL(afB + 1) (Z2Te1 +71) + I(a+ 1)

Dir + cn) + Mo (] + 72TEY)

+ (VQTf; + I/f + T§§) = Bo,
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and

1COs42(5) — Cozya(s)]| < MiMo 5

Mi_gT(8 + 1)Taﬂ>

<V1 + 72T + 2Lg(r)Le(1+ TLe, (r))) (MO " r(as+1)

MT?
+ m <V1 + V2T§2 + 2L7(T)L<(1 -+ TL82(7-)))
MTa+1
+ m <f3 +2L¢Le, (T)>] ||z — EH%%

Further, thinking as in Theorem 3.1 along with Remark 3.1, we receive

[(T12) (1) [|x < MMy [71ls||z, + 7]
M BF(ﬁ +1)78

+ [Movl + MopaTé, + (71 + 72T¢)

AL (af +1)
MTe MTo+1 . B -
+ m(m + 1uTE&) + F( ) ](.@17' + cn) + Mov] + Moo TE]
Ml—,BF(B + 1)T04,3 7 . MT™ i ., MTa-H i}
g 1) T AV oy (TG D)+ €
+ ﬂ
T(la+1)°

<.

From this, we observe that T; maps the ball B, (0, 2%) into itself. Finally,
we demonstrate that T; is contraction on B,(0,%4%). Due to this, let us
take x,7 € B,(0, %Y%), then from Remark 3.1, we receive

I'a+1)

|(Ta2) () — (Taz) (1) < 2 (1 " MMMT) ~

Mi_gT(5 + 1>Taﬁ>

<u1 +09T& + 2Ly (r)Le(1 4 TLe, (r))) <Mo +

Br(afB +1)
+ F'(Aa/liml) <V1 + 12T +2L7(r)Lc(1 + TLe, (T))>
MTa+1
e+ 2L )|~ T

< A& — | o .
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The verification is very much alike to the Theorem 3.1, so we bypass
it. From the assumption (H6)* and in the perspective of the contraction
mapping principle, we understand that Y; includes a unique fixed point
z € A which is a mild solution of the structure (4.1)-(4.2) on (—o0,T]. O

5 Application

Example 5.1:
To exemplify our theoretical results, we treat the FNIDS with SDD of
the model

D7 u(t.€) = g 1ot = ou(t.0).9). [ (s, u(s — o{u(5,0).€))ds)|

ezt ) 5 (tult = ow(t.0).), [ maltsu(s = oluls.00).)ds)

~ o2
—l—/o n3(t, s,u(s — o(u(s,0)),£))ds, t € # =1[0,T], £ €[0,7], (5.1)
uw(t,0) =u(t,m) =0, te.7, (5.2)
u(6,8) =¢(0,§), 6¢€(—,0], &e€]0,n], (5.3)

where ¢ D¢ is Caputo’s fractional derivative of order 0 < o < 1;5(6,¢) is

continuous and o € C(R, .#),s € %B;. We consider X = L?[0, 7] with the
norm | - |72 and determine the operator & : D(&/) C X — X by w = "
with the domain

D(&) = {w € X : w,w’ are absolutely continuous, w” € X, w(0) = w(r) = 0}.

Then -
dw = Zn2<w,wn>wn, w € D(),
n=1
in which wy,(s) = \/gsin(ns), n = 1,2,...,. is that the orthogonal set of

eigenvectors of 7. It is long acquainted that &7 ¢y semigroup (T(¢))¢>0 in
X and is come up with by

[e.o]
T(t)w = Ze‘”2t<w,wn>wn, forall weX, andevery t>0.
n=1

For each w € X,
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(0.9}
and HJZZ_TIH = 1. The operator /2 is given by Arw = Zn(w,wn)wn on

1 - n=1
the space D(&/2) = {w(-) € X: Zn(w,wn)wn € X}.
n=1
0 1
For phase space, we select h = €%*, s < 0, then ! = / h(s)ds = 3 < 00,
—00

for ¢ < 0 and determine

0
lsllz, = / h(s) sup o(0)]]2ds.
—00 0€(s,0]

Hence, for (t,s) € [0, b] x By, where ¢(0)(z) =<(0,z), (0,z) € (—o0,0] X
[0, 7]. Set

z(t)(§) = u(t,§), tes, £e€[0,7],
%(t,c,x)(&):g<t,§(0,£),/0 n(t,s,g(O,&))ds), te s, €07,

t

F (b5, 2)(E) = f(t,qo,o, 0 n(t78,<(0,£))d5>a tes, ccloql,

ei(t787<)(£) = 77z‘(75,57§(075))»i =1,2,3;
o(t,s) =t —o(s(0,0)).

Consequently, with the above decisions, the framework (5.1)-(5.3) can
be composed to the theoretical model (1.1)-(1.2). If suppose that (H1)-(H6)
are fulfilled, then from Banach contraction principle, the system (5.1)-(5.3)

has a unique mild solution on (—oo, 7.
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Example 5.2: Now, let as consider the FNIDS with SDD of the problem

o pp [v(m) _ { / Y N O A OIEI

49
¢ [fsnge—sy [ oz =D des}]
S, /_;g(s_t)ws—m(s)ggurv(s)u),x) i

. /0 inti—s) [ ootraalOhs,,,

. /0 it =) [ etr-o A= DD
(5.4)
v(t,0)=0=uo(t, ), tel0,T] (5.5)
v(t,z) =¢(t,x), t<0, x€][0,n], (5.6)

In perspective of Example 5.1, we set

v(t)(z) =t x), olt,c) = ar(t)ea([[<(0)I]),

we utilize
0
Yt w) = [ s+ ()
0
Pt )@ = [ O5ds+ (o) (a),
¢ 7too 0 c
/eg(t,s,c)(x)ds:/ sin(ts)/ A7) > drds,
0 0 —s0 16
where

t 0
(6)(x) = / sin(t — s)/ eQ(T)ides,
0 —00 36

t 0
(<) (x) = / sin(t — s)/ eQ(T)ides,
0 —00 25

then using these configurations, the system (5.4)-(5.6) is generally composed
in the abstract type of issue (1.1)- (1.2).
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To treat this system we have a tendency to assume that g; : [0,00) —
[0,00), i = 1,2 are continuous. Now, we will see that for ¢ € [0,1],¢,5 € Ay,
we get

()24 (t, 5, 75)|x
1

2 2
S(/ </ ‘ds+/||smt—s||/ () ‘des) d:v)
0
1
s 1 0 1 0 2() 2 2
< . S
< /0 <49/_ supHngs—i—%/ supHngs) dx

VT VT
<1 Isllz, + 36 SIS
<visllz, +72ll<|| =,
where U1 + Uy = %, and

()2 G (t,, ) — ()59 (1,5, 77)||x

T 0
< (/ (/ £2(s)
0 —00
. 0 2 3
—I—/ HSin(t—S)H/ 2 des) dm)
0 —o0
™ 1 0 1 0 2 %
< ([ (5 _ewswlo—sias+ 55 [ Osuplc—clds) do

T

VT
<19 lls =3z, +

S

49 49

36 36

VT _
%\k—?”%h
<vills =%z, +P2lls =<2, -

Similarly, we conclude

|7 (. <. 76) |1
c t 0
‘Hds—l—/ Hsin(t—s)H/ ()
9 0 —00

™ 0 9 2
< / </ e2(s) ‘deS) dx
0 —00 5}
1
T /1 0 1 0 2(s) J 2d 2
< - . S
<([(5 ) osmwicast g [ suplclas) ao

NG

VLS
< — B, + — 7

=

< vilsllz, + v2llsll,
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34
where 11 + 19 = T‘?, and

|7 (t,s, H) — F(t,5,75)|x
™ 0 = t 0 = 2 3
< / / 2@ |15 — 5]l ds —|—/ I'sin(t — s)|| / 2O — SN drds ) da
o \J o 99 0 . 25 25
( < O |

™ _ N3 _
< ?||§ =3l + g\k =<,
<wnlls —<lla, +r2lls — 3|2, -
Furthermore

/Ot [63(t, s,6) — es(t, s,f)]ds

< (/ ([ o= [0

NZS

< Y -7
< Jglls — <l

-

<

S
16 16

2 3
des) dx)

< &lls —<llz

where &3 = \1/(?'

Thus the conditions (H1)-(H5) are satisfied. Moreover, we assume that
72¢ =1, My =1, M=1M1 =1T=1&§ =1, =1and L¢ = 1.

Moreover, the proper choice of constants Ly (r), Lz (r) and Le,(r), for i =
1,2, 3; we get

NI

af
AN =7 | (U1 +02T& + 2Leg (1) Le (14 T'Le, (1)) (Mo n Mi_gT(B+1)T )

BT (aB + 1)
MTa MT&+1
iy ™ T+ 2Le (DL + TLey () + fr gyl + 2LcLey <r>1]

<1.

In this manner the condition (H6) holds. Subsequently by Theorem 3.1,

we have a tendency to understand that the model (5.4)-(5.6) has a unique
mild solution in [0, 1].
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7 Conclusion

In this manuscript, we have studied the existence and controllability
results for FNIDS with SDD in Banach space. More precisely, by utilizing
the semigroup theory, fractional powers of operators and Banach contraction
fixed point theorem, we investigate the FNIDS with SDD in Banach space.
To validate the obtained theoretical results, two examples are analyzed.
The FDEs are very efficient to describe the real-life phenomena; thus, it is
essential to extend the present study to establish the other qualitative and
quantitative properties such as stability and approximate controllability.

There are two direct issues which require further study. First, we will
investigate the approximate controllability of fractional neutral stochastic
integro-differential systems with state-dependent delay both in the case of
a non-compact operator and a normal topological space. Secondly, we will
be devoted to studying the approximate controllability of a new class of
impulsive fractional stochastic differential equations with state-dependent
delay in Hilbert space.
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