Ann. Acad. Rom. Sci.
Ser. Math. Appl.
Vol. 10, No. 2/2018

AN ITERATIVE METHOD FOR AN EQUILIBRIUM POINT OF LINEAR QUADRATIC STOCHASTIC DIFFERENTIAL GAMES WITH STATE AND CONTROL-DEPENDENT NOISE*

Ivelin G. Ivanov[†]

ISSN 2066-6594

Vladislav K. Tanov[‡]

Abstract

We study a numerical algorithm for solving the coupled stochastic algebraic Riccati equations arising in the infinite time horizon nonzerosum linear quadratic (LQ) differential games of stochastic systems. We construct a matrix sequence, which converges to the solution of the considered coupled stochastic algebraic Riccati equations and defines the Nash equilibrium point, which solves a stochastic control problem with state, control and external disturbance-dependent noise. Computer realizations of the introduced methods are numerically compared via Python.

MSC: 91A25, 15A24, 60H35

keywords: Stochastic H_2/H_{∞} , differential games, Nash equilibrium, stochastic Riccati equation.

^{*}Accepted for publication on March 5, 2018

 $^{^{\}dagger}\texttt{iwelin.ivanow@gmail.com}$ Konstantin Preslavsky University of Shumen, Faculty of Mathematics and Informatics, Shumen, Bulgaria

[‡]vtanov24@yahoo.com George Mason University, USA