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Abstract

In this paper we analyse the Kaczmarz projection algorithm with
remotest set control of projection indices. According to this procedure,
at each iteration the projection index is one which gives the maximal
absolute value of the corresponding residual. We prove that for under-
determined full row rank systems and under some assumptions valid
for problems arising in algebraic reconstruction of images in comput-
erized tomography, this selection procedure has the property that each
row index is selected at least once during the Kaczmarz algorithm it-
erations.
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1 Introduction

For A an m× n (real) matrix A and b ∈ IRm in this paper we will consider
the consistent (compatible) system of linear equations

Ax = b, (1)
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and denote by S(A; b) the set of its solutions and by xLS the minimal
(Euclidean) norm one. We will use the notations AT , Ai, A

j ,R(A),N (A),
rank(A), and PV for the transpose, i-th row, j-th column, range and null
space of A, the rank of A, and the projection onto a nonempty closed convex
set V , respectively. We know that

R(AT ) = span{A1, A2, . . . , Am}, xLS ∈ R(AT ).

Also 〈·, ·〉 and ‖ · ‖ will denote the Euclidean scalar product and norm and
all the vectors appearing in the paper will be considered as column vectors.
If Hi = {x ∈ IRn, 〈x,Ai〉 = bi} is the hyperplane determined by the i-th
equation of the system (1) we have

PHi(x) = x− 〈x,Ai〉 − bi
‖Ai‖2

Ai. (2)

The Kaczmarz algorithm with single projection (for short Kaczmarz) is the
following.
Algorithm Kaczmarz
Initialization: x0 ∈ IRn

Iterative step: for k = 0, 1, . . . select ik ∈ {1, 2, . . . ,m} and compute xk+1 as

xk+1 = xk − 〈x
k, Aik〉 − bik
‖ Aik ‖2

Aik . (3)

For an almost complete overview on the selection procedures in Kaczmarz
algorithm see [2], [3] (section 5.1), [5], [4] and references therein. But, an
important problem when considering a selection procedure seems to be the
following: “sooner or latter” during the iterations each (row) projection in-
dex ik must appear. This was clearly formulated in [4] as follows (IN will
denote the set of natural numbers {0, 1, 2, . . . , }).

Definition 1 Given a monotonically increasing sequence {τk}∞k=0 ⊂ IN ,
a mapping i : IN → {1, 2, . . . ,m} is called a control with respect to the
sequence {τk}∞k=0 if it defines a sequence {i(t)}∞t=0, such that for all k ≥ 0,

{1, 2, . . . ,m} ⊆ {i(τk), i(τk + 1), . . . , i(τk+1 − 1)}.

The set τk, τk + 1, . . . , τk+1− 1 is called the k-th window (with respect to the
given sequence {τk}∞k=0) and Ck = τk+1 − τk its length. If the sequence of
lengths (Ck)k≥0 is bounded the control {i(t)}∞t=0 itself is called bounded. If
the sequence of lengths (Ck)k≥0 is unbounded the control {i(t)}∞t=0 itself is
called an expanding control.
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In the same paper [4] there are defined different types of bounded and ex-
panding control sequences. But, there are also other types of control se-
quences which are not included in the above definition. Two well-known
such examples are the random control and remotest set control (called in the
present paper Maximal Residual control (MR, for short).

• Maximal Residual control: Select ik ∈ {1, 2, . . . ,m} such that

|〈Aik , x
k−1〉 − bik | = max

1≤i≤m
|〈Ai, x

k−1〉 − bi|.

• Random control: Let the set ∆m ⊂ IRm be defined by

∆m = {x ∈ IRm, x ≥ 0,
m∑
i=1

xi = 1},

define the discrete probability distribution

p ∈ ∆m, pi =
‖Ai‖2

‖A‖2F
, i = 1, . . . ,m, (4)

and select ik ∈ {1, 2, . . . ,m}

ik ∼ p. (5)

At least related to author’s knowledge, there are no results saying that the
above two control sequences satisfy the previously mentioned property, i.e.
“sooner or latter” during the iterations of Kaczmarz algorithm (3) with that
specific choice of the control sequence, each (row) projection index ik must
appear. More clear, we formulate this property as follows: “ Determine
appropriate assumptions on (1) such that

∀ i ∈ {1, 2, . . . ,m}, ∃ k ≥ 0, with ik = i. (6)

In the rest of the paper we will analyse this property for the Kaczmarz
algorithm with Maximal Residual control sequence (MRK, for short) and
show that it exists a case in which the property (6) can be theoretically
proved.

2 Algorithm MRK

We consider in this section Kaczmarz algorithm (3) in which the Maximal
Residual control procedure is used for selecting the projection indices at
each iteration (caled MRK algorithm).
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Algorithm MRK

Initialization. x0 ∈ IRn;

Iterative step. Select ik ∈ {1, . . . ,m} such that

|rik | = max
1≤i≤m

|ri|, where r = Axk − b ∈ IRm,

and perform the projection

xk+1 = PHik
(xk), ∀ k ≥ 0.

The following result gives us a sufficient condition such that the property
(6) holds.

Proposition 1 Let m ≤ n and suppose that

rank(A) = m, (7)

and

PR(AT )(x
0)− xLS =

m∑
i=1

γiAi.

If

γi 6= 0, ∀ i = 1, . . . ,m, (8)

then (6) is true for the MRK algorithm.

Proof. Suppose that (6) is not satified and let i0 ∈ {1, 2, . . . ,m} be such
that ik 6= i0, for all k ≥ 0. Then, (2) yields that

xk = x0 +
∑

1≤i≤m;i 6=i0

αk
iAi,

with αk
i ∈ IR, hence

xk ∈ x0 + span(Ai, i = 1, . . . ,m, i 6= i0). (9)

In [1] the author proved that for consistent systems as (1) (which holds in
our case because of the assumption (7)) the sequence (xk)k≥0 generated with
the MRK algorithm converges and

lim
k→∞

xk = PN (A)(x
0) + xLS . (10)
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Since the set x0 + span(Ai, i = 1, . . . ,m, i 6= i0) is closed, from (9)) it results
that the limit vector in (10)) belongs to the same set, thus

PN (A)(x
0) + xLS − x0 = xLS − PR(AT )(x

0) ∈ span(Ai, i = 1, . . . ,m, i 6= i0).

This contradicts the hypothesis (8) and completes the proof. ♠

Regarding the possibility to fulfil the hypothesis (8), we give the following
result.

Proposition 2 Let

x0 =
m∑
i=1

βiAi ∈ R(AT )

and suppose that

Ai 6= 0, Aij ≥ 0, ∀ i, j and ‖ xLS ‖ ≤ M, (11)

for some M ≥ 0. If the scalars βi satisfy

βi >
M

Mi
, Mi = max

1≤j≤n
Aij > 0, ∀ i = 1, . . . ,m, (12)

then

PR(AT )(x
0)−xLS = x0−xLS =

m∑
i=1

γiAi, with γi > 0, ∀ i = 1, . . . ,m. (13)

Proof. Let

xLS = (x1, . . . , xn)T =
m∑
i=1

αiAi. (14)

We distinguish the following two cases.
Case 1. Let i0 ∈ {1, . . . ,m} be an index such that in (14) αi0 ≤ 0. Then,
if we take βi0 > 0 for the corresponding γi0 in (13) we obtain γi0 > 0, which
fits into our conclusion.
Case 2. According to Case 1 we may suppose that in (14) we have

αi > 0, ∀ i = 1, . . . ,m.

From (14) we get

0 ≤ xj =
m∑
i=1

αiAij , ∀j = 1, . . . , n,
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which gives us

xj = |xj | ≤

√√√√ n∑
q=1

x2q =‖ xLS ‖≤M, ∀ j = 1, . . . , n,

and therefore

0 ≤
m∑
i=1

αiAij ≤M, ∀ j = 1, . . . , n. (15)

If i ∈ {1, . . . ,m} is arbitrary fixed, from (15) we obtain

0 ≤ αiAij ≤M, ∀ j = 1, . . . , n. (16)

Again because of our assumptions (11) it results that it exists at least one
index j such that Aij > 0, which tell us that

Mi = max
1≤j≤n

Aij > 0. (17)

From (15) - (16) we obtain that the coefficients αi from (14) should satisfy

αi ≤
M

Mi
, ∀ i = 1, . . . ,m

with Mi defined in (17). Hence, in order to get the conclusion (13) we must
take βi as in (12) and the proof is complete. ♠

Remark 1 If A is a scanning matrix from ART in CT, the second as-
sumption in (11) is satisfied. The first assumption is usually imposed for
projection-based iterative methods. Anyway, it is not a restrictive condition
because any zero row from A can be eliminated from the begining without
changing the solution set of (1). The third assumption is also connected with
the ART; indeed we usually have information about the components of the
solutions z = (z1, . . . , zn)T ∈ S(A; b) of the form 0 ≤ zj ≤ C, ∀ j = 1, . . . , n.
This gives us

‖ xLS ‖≤‖ z ‖=

√√√√ n∑
j=1

z2j ≤
√
nC.

Remark 2 In the case of random control (4) - (5), the sequence (xk)k≥0
generated by the corresponding Kaczmarz iteration (3) starts with x0 = 0
and has the property (see e.g. [6], [7])

lim
k→∞

xk = xLS .
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Hence, in this case the assumption (8) would become

xLS =
m∑
i=1

γiAi, with γi 6= 0, ∀ i = 1, . . . ,m

which is hard to be verified.
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