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Abstract

The aim of this paper to present an extended variant of the multi-
valued contraction principle. Under the classical assumptions consid-
ered by Nadler (1969) and Covitz and Nadler (1970) (i.e., the com-
pleteness of the metric space (X, d) and the contraction assumption on
a self multi-valued operator on X having nonempty and closed values)
several other conclusions with respect to the fixed point problem are
presented.
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1 Introduction

It is known that the main metric fixed point theorems for multi-valued
contractions on a complete metric space were given by Nadler [11] and
Covitz-Nadler [4] (see also [3]). Several extensions of this principle were
considered by some authors to different types of generalized metric spaces
(see e.g. [5], [13], [6], ....) and to some generalized contractions conditions
(see e.g. [26], [22], [24], [27], [28], [30], [31], ...).

Moreover, under the basic assumptions of the multi-valued contraction
principle, several other properties of the fixed point set were obtained in
the last decades. The aim of this paper to present an extended (by the
conclusions point of view) version of the multi-valued contraction principle.
For the single-valued case see [25]. For more details on this subject, see [14].

2 Preliminaries

Let us recall first some important preliminary concepts and results.

Let (X, d) be a metric space and P (X) be the family of all nonempty
subsets of X. We denote by Pcl(X) the family of all nonempty closed subsets
of X, by Pb(X) the family of all nonempty bounded subsets of X and by
Pcp(X) the family of all nonempty compact subsets of X. For x0 ∈ X and
r > 0 we will also denote by B(x0; r) := {x ∈ X|d(x0, x) < r} the open ball
centered in x0 with radius r.

We also recall, in the context of a metric space, the definitions of some
important functionals in multi-valued analysis theory:
(a) the gap functional generated by d:

Dd : P (X)× P (X)→ R+, Dd(A,B) := inf{d(a, b) | a ∈ A, b ∈ B};

(b) the excess functional of A over B generated by d:

ed : P (X)× P (X)→ R+ ∪ {+∞}, ed(A,B) := sup{Dd(a,B) | a ∈ A};

(c) the Hausdorff-Pompeiu functional generated by d:

Hd : P (X)× P (X)→ R+ ∪ {+∞}, Hd(A,B) = max{ed(A,B), ed(B,A)}.

The diameter of a set Y ∈ P (X) will be denoted by diam(Y ) := sup
x,y∈Y

d(x, y).

Some useful properties of these functionals are re-called (see, for example,
[2], [7], [13], [17], ) in the next lemma. These properties are important tools
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in the proof of the main conclusions of the Nadler’s multi-valued contraction
principle.

Lemma 1 If (X, d) is a metric space, then we have:

(a) Hd is a generalized (in the sense that H could also take the value
+∞, see [9]) metric in Pcl(X);

(b) if A,B ∈ P (X) and q > 1, then, for every a ∈ A there exists b ∈ B
such that d(a, b) ≤ qHd(A,B).

(c) if there exists η > 0 such that for each a ∈ A there exists b ∈ B such
that d(a, b) ≤ η, then ed(A,B) ≤ η.

(d) if A ∈ P (X) and b ∈ X are such that Dd(b, A) = 0, then b ∈ A.

Recall that if (X, d) is a metric space, then a set Y ∈ P (X) is said to be
proximinal if for every x ∈ X there exists y ∈ Y such that d(x, y) = D(x, Y ).

Finally, let us recall that if X is a nonempty set and F : X → P (X) is
a multi-valued operator, then we denote by Fix(F ) := {x ∈ X : x ∈ F (x)}
the fixed point set for F , by SFix(F ) := {x ∈ X : {x} = F (x)} the strict
fixed point set for F , by Graph(F ) := {(x, y) ∈ X ×X|y ∈ F (x)} the graph
of F and by I(F ) := {Y ⊂ X : F (Y ) ⊂ Y } the set of all invariant subsets
of X with respect to F .

Moreover, for arbitrary (x0, x1) ∈ Graph(F ), the sequence (xn)n∈N with
xn+1 ∈ F (xn) (for n ∈ N∗) is called the sequence of successive approxima-
tions for F staring from (x0, x1).

Let (X, d) be a metric space and F : X → P (X) be a multi-valued

operator. Then, if Y ∈ P (X) we denote by F (Y ) :=
⋃
y∈Y

F (y) the image of

the set Y through F . We also denote by

F 0 := 1X , F
1 := F, . . . , Fn+1 = F ◦ Fn, n ∈ N

the iterate operators of F , where (F ◦ F )(Y ) := F (F (Y )), for Y ∈ P (X).
In the same framework, the set-to-set operator F̂ : P (X) → P (X), defined
by

F̂ (Y ) :=
⋃
x∈Y

F (x), for Y ∈ P (X)

is called Nadler’s set-to-set operator induced by F .

Some typical conditions in fixed point theory for a multi-valued operator
are given now.
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Definition 1 Let (X, d), (Y, d′) be metric spaces and F : X → P (Y ). Then,
F is called an α-contraction if α ∈ (0, 1) and H(F (x1), F (x2)) ≤ αd(x1, x2),
for all x1, x2 ∈ X.

Lemma 2 Let (X, d) be a metric space and F : X → Pcl(X) be α-contraction.
Then, Graph(F ) is a closed set in the topology of X ×X.

The concept of multi-valued weakly Picard operator is central in our
approach.

Definition 2 ([27, 28, 16]) Let (X, d) be a metric space. Then F : X →
P (X) is called a multivalued weakly Picard operator (briefly, MWP operator)
if for each x ∈ X and each y ∈ F (x) there exists a sequence {xn}n∈N in X
such that

(i) x0 = x, x1 = y;

(ii) xn+1 ∈ F (xn), for all n ∈ N;

(iii) the sequence {xn}n∈N is convergent and its limit is a fixed point of F .

Let us recall the following important notion.

Definition 3 Let (X, d) be a metric space and F : X → P (X) be an MWP
operator. Then we define the multivalued operator F∞ : Graph(F ) →
P (Fix(F )) by the formula F∞(x, y) = {z ∈ Fix(F ) | there exists a se-
quence of successive approximations of F starting from (x, y) that converges
to z}.

An important concept is given by the following definition.

Definition 4 Let (X, d) be a metric space and F : X → P (X) an MWP
operator. Then F is a ψ-multi-valued weakly Picard operator (briefly ψ-
MWP operator) if ψ : R+ → R+ is increasing, continuous in 0 with ψ(0) = 0
and there exists a selection f∞ of F∞ such that

d(x, f∞(x, y)) ≤ ψ(d(x, y)), for all (x, y) ∈ Graph(F ).

We will also recall now the notion of multi-valued Picard operator.

Definition 5 ([16], [17]) We say that F : X → P (X) is a multi-valued
Picard operator if:

(i) SFix(F ) = Fix(F ) = {x∗};
(ii) Fn(x)

Hd→ {x∗} as n→∞, for each x ∈ X.
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Several examples of Picard and weakly Picard operators, as well as,
different applications of this theory are given, for example, in [13], [16], [15],
[17], [19].

3 Multi-valued contraction principle: two extended
versions

In 1969, S.B. Nadler Jr. proved the first metric fixed point principle for
multi-valued operators in complete metric spaces. Then, in 1970 S. Covitz
and S.B. Nadler Jr. proved a slight generalizations of it. This theorem is
usually known in the literature as Multivalued Contraction Principle (MCP).

Theorem 1 (MCP(1969, 1970)) Let (X, d) be a complete metric space
and let x0 ∈ X. If F : X → Pcl(X) is a multivalued α-contraction, then
Fix(F ) 6= ∅ and there exists a sequence of successive approximations for F ,
starting from x0, which converges to a fixed point of F .

Later on, it was noticed in several papers that there are several other
conclusions which follow by the main assumptions (completeness of the met-
ric space and the contraction condition for a self multi-valued operator with
nonempty and closed values) of MCP. More precisely, we have the following
extended version of the fixed point principle for multi-valued contractions.

Theorem 2 (An extended version of the MCP) Let (X, d) be a com-
plete metric space and F : X → Pcl(X) be a multi-valued α-contraction.
Then, the following conclusions hold:

(a) there exists x∗ ∈ X such that x∗ ∈ Fix(Fn) for each n ∈ N∗;
(b) there exists a sequence of successive approximations for F , starting

from any pair (x, y) ∈ Graph(F ), which converges to a fixed point f∞(x, y)
of F ;

(c) Fix(F ) is closed in (X, d);
(d) there exists a selection f∞ : Graph(F )→ Fix(F ) of F∞ such that

d(x, f∞(x, y)) ≤ ψ(d(x, y)), for all (x, y) ∈ Graph(F ),

where ψ : R+ → R+, ψ(t) = 1
1−α t;

(e) if (xn)n∈N is a sequence of successive approximations for F , start-
ing from any pair (x, y) ∈ Graph(F ), which converges to a fixed point
f∞(x, y) of F , then

d(xn, f
∞(x, y)) ≤ αn

1− α
d(x, y), for each n ∈ N∗;



On Nadler’s multivalued contraction principle 77

(f) if G : X → Pcl(X) is a multi-valued β-contraction and η > 0 is
such that

H(F (x), G(x)) ≤ η, for each x ∈ X,

then
H(Fix(F ), F ix(G)) ≤ η

1−max{α, β}
;

(g) if Fn : X → Pcl(X), n ∈ N is a sequence of multi-valued α-

contractions such that Fn(x)
H→ F (x) as n→ +∞, uniformly with respect to

x ∈ X, then

Fix(Fn)
H→ Fix(F ) as n→ +∞, i.e., lim

n→∞
H(Fix(Fn), F ix(F )) = 0;

(h) if there exists x0 ∈ X and r > 0 such that D(x0, F (x0)) < (1−α)r,
then there exists x∗ ∈ Fix(F ) ∩B(x0; r);

(i) in particular, if X is a Banach space, then the associated multi-
valued field G(x) := x− F (x) is open and surjective;

(j) the operator F̂ : Pcl(X)→ Pcl(X) defined by F̂ (Y ) :=
⋃
x∈Y

F (x) is

an α-contraction with respect to Hd, i.e.,

Hd(F̂ (A), F̂ (B)) ≤ αHd(A,B), ∀ A,B ∈ Pcl(X) with Hd(A,B) < +∞,

and, if additionally there exists A0 ∈ Pcl(X) such that Hd(A0, F (A0)) <
+∞, then there exists at least one A∗F ∈ Pcl(X) such that F̂ (A∗F ) = A∗F ;

(k) in particular, if F has proximinal values, then for any ε > 0 and
any ε-solution z of the fixed point problem x ∈ F (x) (i.e., D(z, F (z)) ≤ ε)
there exists x∗ ∈ Fix(F ) such that d(z, x∗) ≤ ψ(ε), where ψ : R+ → R+,
ψ(t) = 1

1−α t;

(l) in particular, if F has compact values, then F̂ : Pcp(X)→ Pcp(X)
and it is an α-contraction. Additionally, the following conclusions hold:

(l1) Fix(F̂ ) = {A∗F };
(l2) F

n(Y )
H→ A∗F as n→ +∞, for each Y ∈ Pcp(X);

(l3) A
∗
F =

⋃
n∈N∗

Fn(x), for each x ∈ Fix(F );

(l4) Fix(F ) ⊂ A∗F ;
(l5) Fix(F ) is compact in (X, d).

(m) in particular, if X is a closed convex subset of a Banach space
and, additionally, F has convex values, then Fix(F ) is arcwise connected;

(n) if, additionally, (X, d) is a convex metric space and F has bounded
values, then, for any x∗ ∈ Fix(F ), we have diam(Fix(F )) ≤ 1

1−α ·diam(F (x∗));
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(p) there exists a Caristi selection of F ;
(r) if, for p > 0, we denote Fixp(F ) := {x ∈ X : D(x, F (x)) < p},

then the following relation holds

H(Fixp(F ), F ix(F )) ≤ p

1− α
.

Let us present now some remarks about some of the above assertions.
1) Most of the above assertions are known in fixed point theory. We

refer to [6], [8], [10], [12], [16], [17], [18], [23] for other considerations.
2) By definition, a multi-valued operator satisfying (a) and (b) is called

a multi-valued wealy Picard operator, see Definition 2. If additionally, if
F satisfies (a), (b) and (d) then the operator F is called a ψ-MWP, see
Definition 4.

3) The conclusion (f) shows that the data dependence phenomenon for
the fixed point set of a multi-valued contraction takes place.

4) Conclusion (k) is known as the Ulam-Hyers stability property of the
fixed point problem x ∈ F (x).

A special case of the above principle is the following extended version of
the strict fixed point principle for multi-valued contractions. We note that
most of the above conclusions are known in fixed point theory.

Theorem 3 (An extended version of the MCP with respect to
strict fixed points)

Let (X, d) be a complete metric space and F : X → Pcl(X) be a multi-
valued α-contraction such that SFix(F ) 6= ∅. Then, the following conclu-
sions hold:

(a) Fix(F ) = SFix(F ) = {x∗};
(b) Fix(Fn) = SFix(Fn) = {x∗} for n ∈ N with n ≥ 2;

(c) Fn(x)
H→ {x∗} as n→ +∞, for each x ∈ X;

(d) if G : X → Pcl(X) is a multi-valued operator with Fix(G) 6= ∅
and there exists η > 0 such that H(F (x), G(x)) ≤ η for each x ∈ X, then
H(Fix(F ), F ix(G)) ≤ η

1−α ;
(e) Let Fn : X → Pcl(X), n ∈ N be a sequence of multivalued operators

such that Fix(Fn) 6= ∅ for each n ∈ N and Fn(x)
H→ F (x) as n → +∞,

uniformly with respect to x ∈ X. Then Fix(Fn)
H→ {x∗} as n→ +∞;

(f) if (xn)n∈N is a sequence in X such that D(xn, F (xn)) → 0 as

n→∞, then xn
d→ x∗ as n→∞;

(g) if (xn)n∈N is a sequence in X such that H(xn, F (xn)) → 0 as

n→∞, then xn
d→ x∗ as n→∞;
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(h) if (yn)n∈N is a sequence in X such that D(yn+1, F (yn)) → 0 as

n→∞, then yn
d→ x∗ as n→∞.

Let us present now some remarks about some of the above assertions.

1) By definition, a multi-valued operator satisfying (a) and (c) is called
a multi-valued Picard operator, see Definition 5.

2) Conclusion (d) is a data dependence theorem for the strict fixed point
with respect to an arbitrary perturbation of the multi-valued operator F .

3) The conclusions (f)-(g) give the well-posedness property of the fixed
point problem with respect to Dd and, respectively, with respect to Hd.

4) Conclusion (h) is known as the Ostrovski property of the fixed point
problem x ∈ F (x).

Conclusions. The above theorems contain the most important conse-
quences of the MCP. These are important since it is well-known that many
operator type inclusions in applied mathematics (integral and differential
inclusions, equilibrium problems, game theory problems, mathematics of
fractals, see [1], [20], [21] for some recent results for the single-valued and
the multi-valued case too) are reduced to a fixed point (or a strict fixed
point) inclusion for an appropriate multi-valued operator. Thus, the above
conclusions induce similar properties for the solutions of operator inclusion
problem. For more details, extensions and generalizations of the above re-
sults see [14].

Open Problems. 1) It is an open question to give explicit conditions for
the existence of at least one strict fixed point of a multi-valued contraction
with closed values. This problem is important not only from the above
theorem point of view, but also because many iteration methods for a multi-
valued operator F are working under the assumption that SFix(F ) 6= ∅.
2) Another open problem is to extend the above results to different classes
of multi-valued generalized contractions.
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