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Abstract

We provide generalizations for Euler’s recurrence relation for the
partition function p(n) and the recurrence relation for the partial sums
of the partition function p(n). As a corollary, we derive an infinite fam-
ily of inequalities for the partition function p(n). We present few infi-
nite families of determinant formulas for: the partition function p(n),
the finite differences of the partition function p(n) and the higher-order
partial sums of the partition function p(n).
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1 Introduction

Let n be a positive integer. In order to indicate that λ = [λ1, λ2, . . . , λk] is
a partition of n, i.e.,

n = λ1 + λ2 + · · ·+ λk,
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we use the notation λ ` n. The number of all partitions of a positive integer
n is denoted by p(n). More details and proofs about partitions can be found
in Andrews’s book [1]. We denote by S(n) the n-th partial sum of the
partition function p(n), i.e.,

S(n) =
n∑

k=0

p(k).

It is well-known that S(n) counts the partitions of n into parts where the
part 1 comes in two colours.

The following recurrence relation for the partial sums of the partition
function p(n),

∞∑
k=−∞

(−1)kS (n− k(3k − 1)/2) = 1, (1)

follows easily from Euler’s recurrence relation for the partition function [1,
Corollary 1.8, p. 12], namely

∞∑
k=−∞

(−1)kp (n− k(3k − 1)/2) = 0. (2)

In [3], the author presented the fastest known algorithm for the gen-
eration of the partitions of n. In the above mentioned work, the author
produced this algorithm by introducing a special case of partitions with
restrictions: the partition λ ` n with the property

λ1 ≥ t · λ2 and λ2 ≥ λ3 ≥ · · · ≥ λk,

where t is a positive integer such that t ≤ n. We consider that the partition
[n] has this property and we denote the number of these partitions by p(t)(n).
It is clear that

p(t)(n) ≥ 1 and p(1)(n) = p(n).

Moreover, for t ≥ n we have p(t)(n) = 1. By convention, we set

p(t)(0) = 1, p(0)(n) = p(n) and p(t)(−n) = 0.

The formula
p(t)(n) = p(t−1)(n)− p(t−1)(n− t) (3)

has already been proved for 1 < t < n (see [3, Corollary 1]). It is clear that
the relation (3) holds for any positive integer t and any positive integer n.
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For all non-negative integers t and for all integers n, we define a(t)(n) by

a(t)(n) = a(t−1)(n)− a(t−1)(n− t), (4)

with
a(0)(n) = δ0,n,

where δi,j is Kronecker’s delta. Note that the recurrence (3) for p(t)(n) is
identical in form to the recurrence (4) for a(t)(n), while the initial conditions
are different.

We shall use the integers p(t)(n) and a(t)(n) to prove:

Theorem 1. Let n and t be two positive integers. The number of partitions
of n into parts > t is equal to ∇[p(t)](n) and

n∑
k=0

a(t)(k)p(n− k) = ∇[p(t)](n),

where ∇[f ] denotes the first backward differences of the function f , i.e.,

∇[f ](n) = f(n)− f(n− 1).

Theorem 2. Let n and t be two non-negative integers. Then

n∑
k=0

st,kp(n− k) =

(
n+ t

t

)
,

where

s0,n =
n∑

k=0

a(k)(k) and st,n =
n∑

k=0

st−1,k, for t > 0.

Corollary 1. Let n and t be two positive integers. Then

n∑
k=0

a(t)(k)S(n− k) = p(t)(n).

This result is immediate from Theorem 1 because

p(t)(n)− p(t)(0) =
n∑

j=1

∇[p(t)](j)

=

n∑
j=1

j∑
k=0

a(t)(k)p(j − k)

=

n∑
k=0

a(t)(k)S(n− k)− a(t)(0)p(0)
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and p(t)(0) = a(t)(0)p(0) = 1.
Taking into account (4), it is an easy exercise to show that the generating

function for a(t)(n) is (q; q)t, i.e.,

∞∑
n=0

a(t)(n)qn = (q; q)t, (5)

where (A; q)n is q-Pochhammer symbol, namely

(A; q)n = (1−A)(1−Aq) · · · (1−Aqn−1),

with (A; q)0 = 1. Because ∇[p(n)](n) = δ0,n, the following result is a conse-
quence of Theorem 1 and the pentagonal number theorem [1, Corollary 1.7,
p. 11].

Corollary 2. Let n and t be two nonnegative integers such that n ≤ t. Then

a(t)(n) =

{
(−1)k, if n = 1

2(3k2 ± k), k ∈ N,

0, otherwise
.

Now, we note that the recurrence (1) is the case t ≥ n in Corollary 1
and the recurrence (2) is the case t ≥ n in Theorem 1. We can see that for
all non-negative integers t we have

a(t+n)(n) = a(n)(n)

and the integer a(n)(n) is the coefficient of qn in the Euler function (q; q)∞.
Moreover, s0,n is the n-th partial sum of the coefficients qn from (q; q)∞,
i.e.,

s0,n =

{
(−1)k, if k + Pk ≤ n < Pk+1, k ∈ N,

0, otherwise,

where Pk is the k-th pentagonal number, namely

Pk =
1

2

(
3k2 − k

)
(see A078616 in [4]).

In this paper, using the integers p(t)(n) and a(t)(n), we give a new formu-
las for the partition function, the finite differences of the partition function
and the partial sum of the partition function. As a corollary, we derive an
infinite family of inequalities for the partition function. We consider this a
good reason for someone to study the p(t)(n) and a(t)(n) numbers.
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2 Proofs of theorems

The generating function of p(n) is given by the reciprocal of Euler’s function
(q; q)∞, namely

∞∑
n=0

p(n)qn =
1

(q; q)∞
.

Using induction on t and the relation (3) it is an easy exercise to show that
the generating function for ∇[p(t)](n) is (q; q)t/(q; q)∞, i.e.,

∞∑
n=0

∇[p(t)](n)qn =
(q; q)t
(q; q)∞

.

Therefore, taking into account (5), we obtain

∞∑
n=0

∇[p(t)](n)qn =

( ∞∑
n=0

p(n)qn

)( ∞∑
n=0

a(t)(n)qn

)
.

Extracting coefficients of qn we get

∇[p(t)](n) =
n∑

k=0

a(t)(k)p(n− k)

and Theorem 1 is proved.

Theorem 2 follows directly from

Lemma 1. Let n be a non-negative integers. Then

n∑
k=0

s0,kp(n− k) = 1.

Proof. Expanding the term p(t−1)(n) from the relation (3) and taking into
account that p(n)(n) = 1, we obtain the identity

p(t)(n) = 1 +
n−1∑
k=t

p(k)(n− 1− k).

When k ≥ n, we have p(k)(n) = 1. For
⌊
n
2

⌋
≤ t ≤ n, we get

p(t)(n) = n− t+ 1
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and then

∇[p(t)](n) = 1.

By Theorem 1, we get the relations

2n∑
k=n+1

(
a(n)(k)− a(k)(k)

)
p(2n− k) = 1, n > 0

that can be rewritten in the following way

Ln ·


p(0)
p(1)

...
p(n)

 =


1
1
...
1

 ,
where Ln = [li,j ]1≤i,j≤n+1 is a square matrix with entries

li,j = a(i)(2i+ 1− j)− a(2i+1−j)(2i+ 1− j).

We have

a(t)(t+ n)− a(t+n)(t+ n) =

n−1∑
k=0

(
a(t+k)(t+ n)− a(t+k+1)(t+ n)

)
=

n−1∑
k=0

a(t+k)(n− 1− k) (by relation (4))

=
n−1∑
k=0

a(t+n−1−k)(k).

Then we get

li,j =

i−j∑
k=0

a(2i−j−k)(k)

and

li+1,j+1 =

i−j∑
k=0

a(2i+1−j−k)(k).

For k ≤ i− j, we have 2i+ 1− j − k < k. By (4), we get

a(2i+1−j−k)(k) = a(2i−j−k)(k).
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Thus, we deduce that li,j = li+1,j+1, i.e., Ln is a Toeplitz matrix. For i < j,
we have 2i+ 1− j < i. So, we get li,j = 0. On the other hand, for k < i, we
have k < 2i− 1− k. Thus, we obtain

li,1 =

i−1∑
k=0

a(k)(k)

or

Ln =


s0,0
s0,1 s0,0

...
. . .

. . .

s0,n . . . s0,1 s0,0

 .
The lemma is proved.

We are to prove the Theorem 2 by induction on t. For t = 0 we obtain
Lemma 1. The base case of induction is finished. We suppose that the
relation

n∑
k=0

st′,kp(n− k) =

(
n+ t′

t′

)
is true for any non-negative integers t′, t′ < t. We can write

n∑
k=0

st,kp(n− k) =
n∑

k=0

k∑
i=0

st−1,ip(n− k)

=
n∑

k=0

n−k∑
i=0

st−1,ip(n− i)

=

n∑
k=0

(
n− k + t− 1

t− 1

)
.

Taking into account the relation(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
,

Theorem 2 is proved.
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3 Formulas involving Euler’s partition function

The relation proved in Theorem 1 can be rewritten in the following way
a(t)(0)

a(t)(1) a(t)(0)
...

. . .
. . .

a(t)(n) . . . a(t)(1) a(t)(0)

 ·

p(0)
p(1)

...
p(n)

 =


∇[p(t)](0)

∇[p(t)](1)
...

∇[p(t)](n)

 .
We then immediately have

Corollary 3. Let n and t be two positive integers. Then

p(n) =

∣∣∣∣∣∣∣∣∣∣∣

1 ∇[p(t)](0)

a(t)(1) 1 ∇[p(t)](1)

a(t)(2) a(t)(1) 1 ∇[p(t)](2)
...

. . .
. . .

. . .
...

a(t)(n) . . . a(t)(2) a(t)(1) ∇[p(t)](n)

∣∣∣∣∣∣∣∣∣∣∣
.

For 0 ≤ k ≤ n ≤ t, we have ∇[p(t)](k) = δ0,k. Taking into account
Corollaries 2 and 3, we obtain that

1
2

5

7

...

p(n) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 1
−1 −1 1

0 −1 −1 1
0 0 −1 −1 1
1 0 0 −1 −1 1
0 1 0 0 −1 −1 1
1 0 1 0 0 −1 −1 1
0 1 0 1 0 0 −1 −1
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n×n)

.

This formula can be easily derived by (2). We can see that p(n) is the
determinant of the n × n truncation of the infinite-dimensional Toeplitz
matrix. The only non-zero diagonals of this matrix are those which start
on a row labeled by a generalized pentagonal number. The superdiagonal is
taken to start on row 0. On these diagonals, the matrix element is (−1)k.

The relation proved in Theorem 2 can be rewritten in the following way

L(t)
n ·


p(0)
p(1)

...
p(n)

 =


1(

1+t
t

)
...(

n+t
t

)
 ,
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where
L(t)
n = [st,i−j ]1≤i,j≤n+1

is a triangular Toeplitz matrix with

detL(t)(n) = 1.

We then immediately have

Corollary 4. Let n and t be two non-negative integers. Then

p(n) =

∣∣∣∣∣∣∣∣∣∣∣

1 1

st,1 1
(
1+t
t

)
st,2 st,1 1

(
2+t
t

)
...

. . .
. . .

. . .
...

st,n . . . st,2 st,1
(
n+t
t

)

∣∣∣∣∣∣∣∣∣∣∣
.

For the higher-order differences of the partition function, we have the
following result.

Theorem 3. Let n, t and u be three non-negative integers such that t ≥ u.
Then

n∑
k=0

st,k∇u[p](n− k) =

(
n+ t− u
t− u

)
,

where ∇u[f ] is u-th order backward differences of the function f .

Proof. To prove the theorem we use induction on u and the relation

∇u[p](n− k) = ∇u−1[p](n− k)−∇u−1[p](n− 1− k).

For the case u = 0 we consider Theorem 2.

The next corollary follows easily by this theorem.

Corollary 5. Let n, t and u be three non-negative integers such that t ≥ u.
Then

∇u[p](n) =

∣∣∣∣∣∣∣∣∣∣∣

1 1

st,1 1
(
1+t−u
t−u

)
st,2 st,1 1

(
2+t−u
t−u

)
...

. . .
. . .

. . .
...

st,n . . . st,2 st,1
(
n+t−u
t−u

)

∣∣∣∣∣∣∣∣∣∣∣
.

The case t = u of this corollary can be written as follows.
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Corollary 6. Let n and t be two non-negative integers, n > 0. Then

∇t+1 [p] (n) = (−1)n

∣∣∣∣∣∣∣∣∣
st,1 1
st,2 st,1 1

...
. . .

. . . 1
st,n . . . st,2 st,1

∣∣∣∣∣∣∣∣∣ .
We define the higher-order partial sums of the partition function by

S(u)(n) =
n∑

k=0

S(u−1)(k),

with S(0)(n) = p(n). It is clear that S(1)(n) = S(n). We remark that S(u)(n)
counts the partitions of n into parts where the part 1 comes in u+1 colours.
We have the following result.

Theorem 4. Let n, t and u be three non-negative integers. Then

n∑
k=0

st,kS
(u)(n− k) =

(
n+ t+ u

t+ u

)
.

Proof. To prove the theorem we use induction on u. For the case u = 0 we
consider Theorem 2.

Corollary 7. Let n, t and u be three non-negative integers. Then

S(u)(n) =

∣∣∣∣∣∣∣∣∣∣∣

1 1

st,1 1
(
1+t+u
t+u

)
st,2 st,1 1

(
2+t+u
t+u

)
...

. . .
. . .

. . .
...

st,n . . . st,2 st,1
(
n+t+u
t+u

)

∣∣∣∣∣∣∣∣∣∣∣
.

Corollary 8. Let n and u be two non-negative integers. Then

S(u)(n) =

∣∣∣∣∣∣∣∣∣

(
n+0+u
0+u

)
s0,1 . . . s0,n(

n+1+u
1+u

)
s1,1 . . . s1,n

...
...

. . .
...(

n+n+u
n+u

)
sn,1 . . . sn,n

∣∣∣∣∣∣∣∣∣ .
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Proof. By Theorem 4 we get

A ·


S(u)(n)

S(u)(n− 1)
...

S(u)(0)

 =


(
n+0+u
0+u

)(
n+1+u
1+u

)
...(

n+n+u
n+u

)
 ,

where

A =


s0,0 s0,1 . . . s0,n
s1,0 s1,1 . . . s1,n

...
...

. . .
...

sn,0 sn,1 . . . sn,n

 .
Taking into account Theorem 2 we perform the following transformations
on the matrix A:

Step 1. s
(1)
i,j =

{
si,j , if i = 0,

si,j − s0,j , otherwise

Step 2. s
(2)
i,j =

{
s
(1)
i,j , if i = 1,

s
(1)
i,j − 2s

(1)
1,j , otherwise

...

Step n. s
(n)
i,j =

{
s
(n−1)
i,j , if i = n− 1,

s
(n−1)
i,j − ns(n−1)n−1,j , otherwise.

Thus, we obtain an upper triangular matrix with s0,0 entries on the main
diagonal. We deduce that detA = 1. The proof is finished.

For instance,

p(4) = S(0)(4) =

∣∣∣∣∣∣∣∣∣∣
1 0 −1 −1 −1
5 1 0 −1 −2
15 2 2 1 −1
35 3 5 6 5
70 4 9 15 20

∣∣∣∣∣∣∣∣∣∣
.

4 An infinite family of inequalities

To show the efficiency of the algorithm presented in [3] we had to prove the
following inequality: for n > 0

p(n)− p(n− 1)− p(n− 2) + p(n− 5) ≤ 0.
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In [2], this inequality is the second entry of an infinite family of inequalities
for the partition function p(n). The following inequality

p(n)− p(n− 1)− p(n− 2) + p(n− 3) ≥ 0

is also the second entry of the infinite family of inequalities given by the
following corollary.

Corollary 9. Let n and t be two positive integers. Then

n∑
k=0

a(t)(k)p(n− k) ≥ 0,

with strict inequality if and only if t < n.

Proof. The inequality
∇[p(t)](n) ≥ 0

is trivial. For t ≥ n, we have p(t)(n) = 1 and then we obtain

∇[p(t)](n) = 0.

According to Theorem 1, it is sufficient to prove the strict inequality by
induction on t. For t = n− 1, we obtain

∇[p(n−1)](n) = 2− 1 > 0.

The base case of induction is finished. We suppose that the relation

∇[p(t
′)](n)) > 0

is true for any positive integer t′, t < t′. By relation (3), we can write

∇[p(t)](n) = ∇[p(t+1)](n) +∇[p(t)](n− t− 1).

Taking into account that

∇[p(t+1)](n) > 0,

we obtain
∇[p(t)](n) > 0

and the corollary is proved.

Finally, we remark few specializations of Corollary 9:
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a) p(n)− p(n− 1)− p(n− 2) + p(n− 4) + p(n− 5)− p(n− 6) ≥ 0;

b) p(n)− p(n− 1)− p(n− 2) + 2p(n− 5)

−p(n− 8)− p(n− 9) + p(n− 10) ≥ 0;

c) p(n)− p(n− 1)− p(n− 2) + p(n− 5) + p(n− 6) + p(n− 7)− p(n− 8)

−p(n− 9)− p(n− 10) + p(n− 13) + p(n− 14)− p(n− 15) ≥ 0.
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