ISSN 2066-6594

HIGHER-ORDER DIFFERENCES AND HIGHER-ORDER PARTIAL SUMS OF EULER'S PARTITION FUNCTION *

Mircea Merca[†]

Dedicated to Professor Mihail Megan on the occasion of his 70th anniversary

Abstract

We provide generalizations for Euler's recurrence relation for the partition function p(n) and the recurrence relation for the partial sums of the partition function p(n). As a corollary, we derive an infinite family of inequalities for the partition function p(n). We present few infinite families of determinant formulas for: the partition function p(n), the finite differences of the partition function p(n) and the higher-order partial sums of the partition function p(n).

MSC: 05A19, 05A20

keywords: partitions, finite differences, partial sums

1 Introduction

Let n be a positive integer. In order to indicate that $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_k]$ is a partition of n, i.e.,

$$n = \lambda_1 + \lambda_2 + \dots + \lambda_k,$$

^{*}Accepted for publication on February 20, 2018

[†]mircea.merca@profinfo.edu.ro Academy of Romanian Scientists, Splaiul Independentei 54, Bucharest, 050094 Romania

we use the notation $\lambda \vdash n$. The number of all partitions of a positive integer n is denoted by p(n). More details and proofs about partitions can be found in Andrews's book [1]. We denote by S(n) the *n*-th partial sum of the partition function p(n), i.e.,

$$S(n) = \sum_{k=0}^{n} p(k).$$

It is well-known that S(n) counts the partitions of n into parts where the part 1 comes in two colours.

The following recurrence relation for the partial sums of the partition function p(n),

$$\sum_{k=-\infty}^{\infty} (-1)^k S\left(n - k(3k-1)/2\right) = 1,$$
(1)

follows easily from Euler's recurrence relation for the partition function [1, Corollary 1.8, p. 12], namely

$$\sum_{k=-\infty}^{\infty} (-1)^k p \left(n - k(3k-1)/2\right) = 0.$$
(2)

In [3], the author presented the fastest known algorithm for the generation of the partitions of n. In the above mentioned work, the author produced this algorithm by introducing a special case of partitions with restrictions: the partition $\lambda \vdash n$ with the property

$$\lambda_1 \ge t \cdot \lambda_2$$
 and $\lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_k$,

where t is a positive integer such that $t \leq n$. We consider that the partition [n] has this property and we denote the number of these partitions by $p^{(t)}(n)$. It is clear that

$$p^{(t)}(n) \ge 1$$
 and $p^{(1)}(n) = p(n).$

Moreover, for $t \ge n$ we have $p^{(t)}(n) = 1$. By convention, we set

$$p^{(t)}(0) = 1,$$
 $p^{(0)}(n) = p(n)$ and $p^{(t)}(-n) = 0.$

The formula

$$p^{(t)}(n) = p^{(t-1)}(n) - p^{(t-1)}(n-t)$$
(3)

has already been proved for 1 < t < n (see [3, Corollary 1]). It is clear that the relation (3) holds for any positive integer t and any positive integer n.

For all non-negative integers t and for all integers n, we define $a^{(t)}(n)$ by

$$a^{(t)}(n) = a^{(t-1)}(n) - a^{(t-1)}(n-t),$$
(4)

with

$$a^{(0)}(n) = \delta_{0,n},$$

where $\delta_{i,j}$ is Kronecker's delta. Note that the recurrence (3) for $p^{(t)}(n)$ is identical in form to the recurrence (4) for $a^{(t)}(n)$, while the initial conditions are different.

We shall use the integers $p^{(t)}(n)$ and $a^{(t)}(n)$ to prove:

Theorem 1. Let n and t be two positive integers. The number of partitions of n into parts > t is equal to $\nabla[p^{(t)}](n)$ and

$$\sum_{k=0}^{n} a^{(t)}(k)p(n-k) = \nabla[p^{(t)}](n),$$

where $\nabla[f]$ denotes the first backward differences of the function f, i.e.,

$$\nabla[f](n) = f(n) - f(n-1).$$

Theorem 2. Let n and t be two non-negative integers. Then

$$\sum_{k=0}^{n} s_{t,k} p(n-k) = \binom{n+t}{t},$$

where

$$s_{0,n} = \sum_{k=0}^{n} a^{(k)}(k)$$
 and $s_{t,n} = \sum_{k=0}^{n} s_{t-1,k}$, for $t > 0$.

Corollary 1. Let n and t be two positive integers. Then

$$\sum_{k=0}^{n} a^{(t)}(k) S(n-k) = p^{(t)}(n).$$

This result is immediate from Theorem 1 because

$$p^{(t)}(n) - p^{(t)}(0) = \sum_{j=1}^{n} \nabla[p^{(t)}](j)$$

=
$$\sum_{j=1}^{n} \sum_{k=0}^{j} a^{(t)}(k)p(j-k)$$

=
$$\sum_{k=0}^{n} a^{(t)}(k)S(n-k) - a^{(t)}(0)p(0)$$

and $p^{(t)}(0) = a^{(t)}(0)p(0) = 1$.

Taking into account (4), it is an easy exercise to show that the generating function for $a^{(t)}(n)$ is $(q;q)_t$, i.e.,

$$\sum_{n=0}^{\infty} a^{(t)}(n)q^n = (q;q)_t,$$
(5)

where $(A;q)_n$ is q-Pochhammer symbol, namely

$$(A;q)_n = (1-A)(1-Aq)\cdots(1-Aq^{n-1}),$$

with $(A;q)_0 = 1$. Because $\nabla[p^{(n)}](n) = \delta_{0,n}$, the following result is a consequence of Theorem 1 and the pentagonal number theorem [1, Corollary 1.7, p. 11].

Corollary 2. Let n and t be two nonnegative integers such that $n \leq t$. Then

$$a^{(t)}(n) = \begin{cases} (-1)^k, & \text{if } n = \frac{1}{2}(3k^2 \pm k), \ k \in \mathbb{N}, \\ 0, & \text{otherwise} \end{cases}$$

Now, we note that the recurrence (1) is the case $t \ge n$ in Corollary 1 and the recurrence (2) is the case $t \ge n$ in Theorem 1. We can see that for all non-negative integers t we have

$$a^{(t+n)}(n) = a^{(n)}(n)$$

and the integer $a^{(n)}(n)$ is the coefficient of q^n in the Euler function $(q;q)_{\infty}$. Moreover, $s_{0,n}$ is the *n*-th partial sum of the coefficients q^n from $(q;q)_{\infty}$, i.e.,

$$s_{0,n} = \begin{cases} (-1)^k, & \text{if } k + P_k \le n < P_{k+1}, \ k \in \mathbb{N}, \\ 0, & \text{otherwise,} \end{cases}$$

where P_k is the k-th pentagonal number, namely

$$P_k = \frac{1}{2} \left(3k^2 - k \right)$$

(see A078616 in [4]).

In this paper, using the integers $p^{(t)}(n)$ and $a^{(t)}(n)$, we give a new formulas for the partition function, the finite differences of the partition function and the partial sum of the partition function. As a corollary, we derive an infinite family of inequalities for the partition function. We consider this a good reason for someone to study the $p^{(t)}(n)$ and $a^{(t)}(n)$ numbers.

2 Proofs of theorems

The generating function of p(n) is given by the reciprocal of Euler's function $(q;q)_{\infty}$, namely

$$\sum_{n=0}^{\infty} p(n)q^n = \frac{1}{(q;q)_{\infty}}.$$

Using induction on t and the relation (3) it is an easy exercise to show that the generating function for $\nabla[p^{(t)}](n)$ is $(q;q)_t/(q;q)_\infty$, i.e.,

$$\sum_{n=0}^{\infty} \nabla[p^{(t)}](n)q^n = \frac{(q;q)_t}{(q;q)_{\infty}}.$$

Therefore, taking into account (5), we obtain

$$\sum_{n=0}^{\infty} \nabla[p^{(t)}](n)q^n = \left(\sum_{n=0}^{\infty} p(n)q^n\right) \left(\sum_{n=0}^{\infty} a^{(t)}(n)q^n\right).$$

Extracting coefficients of q^n we get

$$\nabla[p^{(t)}](n) = \sum_{k=0}^{n} a^{(t)}(k)p(n-k)$$

and Theorem 1 is proved.

Theorem 2 follows directly from

Lemma 1. Let n be a non-negative integers. Then

$$\sum_{k=0}^{n} s_{0,k} p(n-k) = 1.$$

Proof. Expanding the term $p^{(t-1)}(n)$ from the relation (3) and taking into account that $p^{(n)}(n) = 1$, we obtain the identity

$$p^{(t)}(n) = 1 + \sum_{k=t}^{n-1} p^{(k)}(n-1-k).$$

When $k \ge n$, we have $p^{(k)}(n) = 1$. For $\lfloor \frac{n}{2} \rfloor \le t \le n$, we get

 $p^{(t)}(n) = n - t + 1$

and then

$$\nabla[p^{(t)}](n) = 1.$$

By Theorem 1, we get the relations

$$\sum_{k=n+1}^{2n} \left(a^{(n)}(k) - a^{(k)}(k) \right) p(2n-k) = 1, \ n > 0$$

that can be rewritten in the following way

$$L_n \cdot \begin{bmatrix} p(0) \\ p(1) \\ \vdots \\ p(n) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix},$$

where $L_n = [l_{i,j}]_{1 \le i,j \le n+1}$ is a square matrix with entries

$$l_{i,j} = a^{(i)}(2i+1-j) - a^{(2i+1-j)}(2i+1-j).$$

We have

$$a^{(t)}(t+n) - a^{(t+n)}(t+n) = \sum_{k=0}^{n-1} \left(a^{(t+k)}(t+n) - a^{(t+k+1)}(t+n) \right)$$
$$= \sum_{k=0}^{n-1} a^{(t+k)}(n-1-k) \qquad \text{(by relation (4))}$$
$$= \sum_{k=0}^{n-1} a^{(t+n-1-k)}(k).$$

Then we get

$$l_{i,j} = \sum_{k=0}^{i-j} a^{(2i-j-k)}(k)$$

and

$$l_{i+1,j+1} = \sum_{k=0}^{i-j} a^{(2i+1-j-k)}(k).$$

For $k \leq i - j$, we have 2i + 1 - j - k < k. By (4), we get

$$a^{(2i+1-j-k)}(k) = a^{(2i-j-k)}(k).$$

Thus, we deduce that $l_{i,j} = l_{i+1,j+1}$, i.e., L_n is a Toeplitz matrix. For i < j, we have 2i + 1 - j < i. So, we get $l_{i,j} = 0$. On the other hand, for k < i, we have k < 2i - 1 - k. Thus, we obtain

$$l_{i,1} = \sum_{k=0}^{i-1} a^{(k)}(k)$$

or

$$L_n = \begin{bmatrix} s_{0,0} & & & \\ s_{0,1} & s_{0,0} & & \\ \vdots & \ddots & \ddots & \\ s_{0,n} & \dots & s_{0,1} & s_{0,0} \end{bmatrix}.$$

The lemma is proved.

We are to prove the Theorem 2 by induction on t. For t = 0 we obtain Lemma 1. The base case of induction is finished. We suppose that the relation

$$\sum_{k=0}^{n} s_{t',k} p(n-k) = \binom{n+t'}{t'}$$

is true for any non-negative integers t', t' < t. We can write

$$\sum_{k=0}^{n} s_{t,k} p(n-k) = \sum_{k=0}^{n} \sum_{i=0}^{k} s_{t-1,i} p(n-k)$$
$$= \sum_{k=0}^{n} \sum_{i=0}^{n-k} s_{t-1,i} p(n-i)$$
$$= \sum_{k=0}^{n} \binom{n-k+t-1}{t-1}.$$

Taking into account the relation

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1},$$

Theorem 2 is proved.

3 Formulas involving Euler's partition function

The relation proved in Theorem 1 can be rewritten in the following way

$$\begin{bmatrix} a^{(t)}(0) & & & \\ a^{(t)}(1) & a^{(t)}(0) & & \\ \vdots & \ddots & \ddots & \\ a^{(t)}(n) & \dots & a^{(t)}(1) & a^{(t)}(0) \end{bmatrix} \cdot \begin{bmatrix} p(0) \\ p(1) \\ \vdots \\ p(n) \end{bmatrix} = \begin{bmatrix} \nabla[p^{(t)}](0) \\ \nabla[p^{(t)}](1) \\ \vdots \\ \nabla[p^{(t)}](n) \end{bmatrix}.$$

We then immediately have

Corollary 3. Let n and t be two positive integers. Then

$$p(n) = \begin{vmatrix} 1 & & \nabla[p^{(t)}](0) \\ a^{(t)}(1) & 1 & \nabla[p^{(t)}](1) \\ a^{(t)}(2) & a^{(t)}(1) & 1 & \nabla[p^{(t)}](2) \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a^{(t)}(n) & \dots & a^{(t)}(2) & a^{(t)}(1) & \nabla[p^{(t)}](n) \end{vmatrix}.$$

For $0 \leq k \leq n \leq t$, we have $\nabla[p^{(t)}](k) = \delta_{0,k}$. Taking into account Corollaries 2 and 3, we obtain that

This formula can be easily derived by (2). We can see that p(n) is the determinant of the $n \times n$ truncation of the infinite-dimensional Toeplitz matrix. The only non-zero diagonals of this matrix are those which start on a row labeled by a generalized pentagonal number. The superdiagonal is taken to start on row 0. On these diagonals, the matrix element is $(-1)^k$.

The relation proved in Theorem 2 can be rewritten in the following way

$$L_n^{(t)} \cdot \begin{bmatrix} p(0) \\ p(1) \\ \vdots \\ p(n) \end{bmatrix} = \begin{bmatrix} 1 \\ \binom{1+t}{t} \\ \vdots \\ \binom{n+t}{t} \end{bmatrix},$$

where

$$L_n^{(t)} = [s_{t,i-j}]_{1 \le i,j \le n+1}$$

is a triangular Toeplitz matrix with

$$\det L^{(t)}(n) = 1.$$

We then immediately have

Corollary 4. Let n and t be two non-negative integers. Then

$$p(n) = \begin{vmatrix} 1 & & 1 \\ s_{t,1} & 1 & {\binom{1+t}{t}} \\ s_{t,2} & s_{t,1} & 1 & {\binom{2+t}{t}} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ s_{t,n} & \dots & s_{t,2} & s_{t,1} & {\binom{n+t}{t}} \end{vmatrix}.$$

For the higher-order differences of the partition function, we have the following result.

Theorem 3. Let n, t and u be three non-negative integers such that $t \ge u$. Then

$$\sum_{k=0}^{n} s_{t,k} \nabla^{u}[p](n-k) = \binom{n+t-u}{t-u},$$

where $\nabla^{u}[f]$ is u-th order backward differences of the function f.

Proof. To prove the theorem we use induction on u and the relation

$$\nabla^{u}[p](n-k) = \nabla^{u-1}[p](n-k) - \nabla^{u-1}[p](n-1-k).$$

For the case u = 0 we consider Theorem 2.

The next corollary follows easily by this theorem.

Corollary 5. Let n, t and u be three non-negative integers such that $t \ge u$. Then

$$\nabla^{u}[p](n) = \begin{vmatrix} 1 & & & 1 \\ s_{t,1} & 1 & & \binom{1+t-u}{t-u} \\ s_{t,2} & s_{t,1} & 1 & \binom{2+t-u}{t-u} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ s_{t,n} & \dots & s_{t,2} & s_{t,1} & \binom{n+t-u}{t-u} \end{vmatrix}.$$

The case t = u of this corollary can be written as follows.

Corollary 6. Let n and t be two non-negative integers, n > 0. Then

$$\nabla^{t+1}[p](n) = (-1)^n \begin{vmatrix} s_{t,1} & 1 & \\ s_{t,2} & s_{t,1} & 1 & \\ \vdots & \ddots & \ddots & 1 \\ s_{t,n} & \dots & s_{t,2} & s_{t,1} \end{vmatrix}.$$

We define the higher-order partial sums of the partition function by

$$S^{(u)}(n) = \sum_{k=0}^{n} S^{(u-1)}(k),$$

with $S^{(0)}(n) = p(n)$. It is clear that $S^{(1)}(n) = S(n)$. We remark that $S^{(u)}(n)$ counts the partitions of n into parts where the part 1 comes in u+1 colours. We have the following result.

Theorem 4. Let n, t and u be three non-negative integers. Then

$$\sum_{k=0}^{n} s_{t,k} S^{(u)}(n-k) = \binom{n+t+u}{t+u}.$$

Proof. To prove the theorem we use induction on u. For the case u = 0 we consider Theorem 2.

Corollary 7. Let n, t and u be three non-negative integers. Then

$$S^{(u)}(n) = \begin{vmatrix} 1 & & 1 \\ s_{t,1} & 1 & \begin{pmatrix} 1+t+u \\ t+u \end{pmatrix} \\ s_{t,2} & s_{t,1} & 1 & \begin{pmatrix} 2+t+u \\ t+u \end{pmatrix} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ s_{t,n} & \dots & s_{t,2} & s_{t,1} & \begin{pmatrix} n+t+u \\ t+u \end{pmatrix} \end{vmatrix}.$$

Corollary 8. Let n and u be two non-negative integers. Then

$$S^{(u)}(n) = \begin{vmatrix} \binom{n+0+u}{0+u} & s_{0,1} & \dots & s_{0,n} \\ \binom{n+1+u}{1+u} & s_{1,1} & \dots & s_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ \binom{n+n+u}{n+u} & s_{n,1} & \dots & s_{n,n} \end{vmatrix}.$$

Proof. By Theorem 4 we get

$$A \cdot \begin{bmatrix} S^{(u)}(n) \\ S^{(u)}(n-1) \\ \vdots \\ S^{(u)}(0) \end{bmatrix} = \begin{bmatrix} \binom{n+0+u}{0+u} \\ \binom{n+1+u}{1+u} \\ \vdots \\ \binom{n+n+u}{n+u} \end{bmatrix},$$

where

$$A = \begin{bmatrix} s_{0,0} & s_{0,1} & \dots & s_{0,n} \\ s_{1,0} & s_{1,1} & \dots & s_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n,0} & s_{n,1} & \dots & s_{n,n} \end{bmatrix}.$$

Taking into account Theorem 2 we perform the following transformations on the matrix A:

$$\begin{array}{rcl} \text{Step 1.} & s_{i,j}^{(1)} & = & \begin{cases} s_{i,j}, & \text{if } i = 0, \\ s_{i,j} - s_{0,j}, & \text{otherwise} \end{cases} \\ \text{Step 2.} & s_{i,j}^{(2)} & = & \begin{cases} s_{i,j}^{(1)}, & \text{if } i = 1, \\ s_{i,j}^{(1)} - 2s_{1,j}^{(1)}, & \text{otherwise} \end{cases} \\ & \vdots \\ \text{Step } n. & s_{i,j}^{(n)} & = & \begin{cases} s_{i,j}^{(n-1)}, & \text{if } i = n-1, \\ s_{i,j}^{(n-1)} - ns_{n-1,j}^{(n-1)}, & \text{otherwise.} \end{cases} \end{array}$$

Thus, we obtain an upper triangular matrix with $s_{0,0}$ entries on the main diagonal. We deduce that det A = 1. The proof is finished.

For instance,

$$p(4) = S^{(0)}(4) = \begin{vmatrix} 1 & 0 & -1 & -1 & -1 \\ 5 & 1 & 0 & -1 & -2 \\ 15 & 2 & 2 & 1 & -1 \\ 35 & 3 & 5 & 6 & 5 \\ 70 & 4 & 9 & 15 & 20 \end{vmatrix}.$$

4 An infinite family of inequalities

To show the efficiency of the algorithm presented in [3] we had to prove the following inequality: for n > 0

$$p(n) - p(n-1) - p(n-2) + p(n-5) \le 0.$$

In [2], this inequality is the second entry of an infinite family of inequalities for the partition function p(n). The following inequality

$$p(n) - p(n-1) - p(n-2) + p(n-3) \ge 0$$

is also the second entry of the infinite family of inequalities given by the following corollary.

Corollary 9. Let n and t be two positive integers. Then

$$\sum_{k=0}^{n} a^{(t)}(k) p(n-k) \ge 0,$$

with strict inequality if and only if t < n.

Proof. The inequality

$$\nabla[p^{(t)}](n) \ge 0$$

is trivial. For $t \ge n$, we have $p^{(t)}(n) = 1$ and then we obtain

$$\nabla[p^{(t)}](n) = 0.$$

According to Theorem 1, it is sufficient to prove the strict inequality by induction on t. For t = n - 1, we obtain

$$\nabla[p^{(n-1)}](n) = 2 - 1 > 0.$$

The base case of induction is finished. We suppose that the relation

$$\nabla[p^{(t')}](n)) > 0$$

is true for any positive integer t', t < t'. By relation (3), we can write

$$\nabla[p^{(t)}](n) = \nabla[p^{(t+1)}](n) + \nabla[p^{(t)}](n-t-1).$$

Taking into account that

$$\nabla[p^{(t+1)}](n) > 0,$$

we obtain

 $\nabla[p^{(t)}](n) > 0$

and the corollary is proved.

Finally, we remark few specializations of Corollary 9:

70

a)
$$p(n) - p(n-1) - p(n-2) + p(n-4) + p(n-5) - p(n-6) \ge 0;$$

b) p(n) - p(n-1) - p(n-2) + 2p(n-5)

$$-p(n-8) - p(n-9) + p(n-10) \ge 0;$$

c)
$$p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-6) + p(n-7) - p(n-8)$$

 $-p(n-9) - p(n-10) + p(n-13) + p(n-14) - p(n-15) \ge 0.$

Acknowledgement. The author likes to thank the referees for their helpful comments.

References

- G. E. Andrews, *The Theory of Partitions.*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original. MR1634067 (99c:11126)
- [2] G. E. Andrews, M. Merca, The Truncated Pentagonal Number Theorem. J. Combin. Theory Ser. A 119:1639-1643, (2012).
- [3] M. Merca, Fast Algorithm for Generating Ascending Compositions. J. Math. Model. Algorithms 11:89–104, 2012.
- [4] N. J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences*. Published electronically at http://oeis.org, 2017.