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Abstract

We review some results on optimal control problems with both state
and control constraints, or general mixed constraints, including certain
recent developments. In the setting of state constrained control prob-
lems, we consider an approximation technique involving variational
inequalities. The constraints may be automatically satisfied in this
procedure. For control problems with mixed constraints, a relaxation
of classical interiority assumptions is presented together with a recent
approach based on implicit parametrization results and yielding global
type algorithms.
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1 Introduction

This is a survey paper devoted to the subject of general constraints in op-
timal control theory. The subject is vast, difficult and of high interest. We
shall concentrate on several directions of investigation, related to fundamen-
tal questions like approximation, necessary conditions, global algorithms.
This choice is due to the personal experience of the author and it includes
as well very recent progress in the field. Comparisons, comments on other
methods and results are also indicated.

In the next section, we discuss the variational inequality approach to
state constrained optimal control problems. Approximation and equivalence
theorems are reviewed. A comparison with the penalization technique is
provided. This and the next section are written in the setting of parabolic
systems or for abstract evolution equations.

In Section 3, we continue the investigation of such problems, including
the case of abstract mixed constraints and introducing a very weak con-
straint qualification condition that allows void interiors for the constraints
sets. Bang-bang type results and applications in some economical models
are also briefly mentioned.

The last section reports on very recent developments in global type ap-
proximation methods for optimal control problems governed by ordinary
differential systems with general constraints: state, control, mixed, equality,
inequality, abstract etc. The approach is based on the implicit parametriza-
tion approach, [21].

2 Approximation and equivalence

We consider V,H,U to be Hilbert spaces with dense and compact imbedding
V ⊂ H ⊂ V ∗ (the dual space of V - H is identified with its own dual space)
and A : V → V ∗, B : U → H to be linear bounded operators with the
assumptions:

(Av, v)V ∗×V ≥ ω|v|2V , ω > 0, ∀ v ∈ V, (1)

(Ay, v)V ∗×V = (y,Av)V×V ∗ , ∀ y, v ∈ V. (2)

The state constrained optimal control problem is defined by

Min{g(y) + h(u)}, (3)
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y′ +Ay = Bu+ f a.e. in [0, T ], (4)

y(0) = y0, (5)

y(t) ∈ C, t ∈ [0, T ], (6)

Above, C ⊂ H is a nonvoid, closed, convex subset, y0 ∈ C, Ay0 ∈ H,
f ∈ L2(0, T ;H), g : L2(0, T ;H)→ R is convex, continuous, majorized from
below by a constant and h : L2(0, T ;U) →] − ∞,+∞] is convex, proper,
lower semicontinuous and coercive:

lim
|u|L2(0,T ;U)→∞

h(u) =∞. (7)

Notice that control constraints u ∈ Uad ⊂ L2(0, T ;U), a convex closed
subset, may be included in the definition of h by adding the corresponding
indicator function.

For any u ∈ L2(0, T ;H), the equation (4), (5) has a unique solution y ∈
C(0, T ;V ), y′ ∈ L2(0, T ;H) due to (1), (2). Under the usual admissibility
hypothesis the control problem (3) - (6) has an optimal pair [y∗, u∗] due to
(7) and unique if strict convexity is assumed for the cost functional (3).

If V = H1
0 (Ω), H = L2(Ω), the usual Sobolev spaces in the smooth

bounded domain Ω ⊂ Rd, and A is an elliptic operator in H1
0 (Ω), then the

equation (4), (5) becomes a parabolic problem.

One variant of the variational inequality approximation technique is to
associate with the constrained control problem (3) - (6), the approximate
problem without state constraints:

Min{g(y) + h(u) +
1

2
|w|2L2(0,T ;V ∗)}, (8)

y′ +Ay + εω = Bu+ f, ε > 0, w ∈ ∂ϕ(y), (9)

y(0) = y0, (10)

where ϕ : V →]−∞,+∞] is convex, lower semicontinuous, proper

ϕ(v) =

 0 v ∈ C ∩ V,

+∞ otherwise.
(11)
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The variational inequality (9), (10) has a unique solution y ∈ C(0, T ;H)∩
L2(0, T ;V ), y′ ∈ L2(0, T ;H) by standard existence results in the literature
[2]. Moreover w ∈ L2(0, T ;V ∗) as well (related to the section of ∂ϕ(y)
occuring in (9)).

Using standard techniques involving minimizing sequences [19], it is pos-
sible to show that the unconstrained control problem (8) - (10) has at least
one optimal pair [yε, uε] for any ε > 0. The justification of this approach is
given by the following result [12]:

Theorem 1 If h is strictly convex and superquadratic and U = L2(Ω), then

uε → u∗, strongly in L2(0, T ;H),

yε → y∗, strongly in C(0, T ;H).

If we denote by yε the solution of (4), (5 ) corresponding to uε, then

dist(yε, C ∩ V )C(0,T ;H)∩L2(0,T ;V ) ≤ kε, (12)

where k > 0 is independent of ε > 0.

This shows the suboptimal character of the control uε, including an
explicit uniform estimate of the possible violation of the state constraint (6).
Theorem 1 can be strengthened to include a regularization of the nonlinear
operator ∂ϕ that appears both in the cost (8) and in the state equation (9).

Slightly weaker estimates as in (12) may be obtained as well. For the
regularized problems, usual gradient methods may be applied on numeri-
cal results are indicated in [12]. The variational inequality approach is a
refinement of the penalization method with better estimates.

Assume now that B : U → V ∗ linear bounded, f ∈ L2(0, T ;V ∗) and
C ⊂ V . Then, y ∈ C(0, T ;H) ∩ L2(0, T ;V ), y′ ∈ L2(0, T ;V ∗) as defined in
(4), (5). Let B∗ : V → U∗ be the adjoint operator and C̃ = {v ∈ V,B∗v ∈
B∗(C)}. We introduce the unconstrained problem

Min{g(y) + h(u− w) +
1

2
|w|2L2(0,T ;U)}, (13)

y′ +Ay +Bw = Bu+ f, w ∈ ∂ψ(B∗y), (14)

y(0) = y0, (15)
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where ψ is the indicator function of B∗(C) in U∗. Under certain condition
on dom(ψ)∩ range(B∗) of interiority type [18], [3], the equation (14) can be
rewritten in the form

y′ +Ay + ∂φ̃(y) 3 Bu+ f, (16)

where φ̃ is the indicator of C̃ in V .

Theorem 2 The control problems (13) - (15) and (3) - (6) are equivalent
in the sense that they have the same optimal values and optimal pairs.

This section is based on [12] and [5] where more algorithms and equiva-
lence results and applications to bang-bang properties may be found.

3 Interiority assumptions and generalized
optimality conditions

We discuss here a more general optimal control problem involving abstract
mixed constraints:

Min{L(y, u) + l(y(T ))}, (17)

y′(t) +A(t)y(t) = Bu(t) + f(t) a.e. in [0, T ], (18)

[y, u] ∈ D ⊂ [L2(0, T ;V ) ∩W 1,2(0, T ;V ∗)]× L2(0, T ;U). (19)

HereD is a convex closed nonvoid subset, f ∈ L2(0, T ;V ∗), L : L2(0, T ;H×
U) → R, l : H → R are convex, continuous mappings, with the coercivity
property:

L(y, u) ≥ c1|u|2L2(0,T ;U) − c2, ci > 0 constants. (20)

The family of operators A(t) is V ∗ - measurable on ]0, T [ and satisfies
conditions like (1), (2) with uniform in t ∈ [0, T ] constants. The solution
of (18), with initial condition y(0) = y0 ∈ H is unique in L2(0, T ;V ) ∩
W 1,2(0, T ;V ∗).

Under the admissibility condition, hypothesis (20) ensures the existence
of at least one optimal pair [y∗, u∗] ∈ D for the problem (17) - (19).

To obtain the optimality conditions for the problem (17) - (19), it is
usual [3] to impose Slater type assumptions
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∃ [ȳ, ū] feasible : ȳ ∈ int{y ∈ C(0, T ;H); [y, ū] ∈ D}. (21)

In the papers [4], [22], [6] related problems and applications are studied.
We denote the operator

∀ [y, u] ∈ [L2(0, T ;V ) ∩W 1,2(0, T ;V ∗)]× L2(0, T ;V ),

T (y, u) = y′ +A(t)y −Bu− f ∈ L2(0, T ;V ∗).
(22)

We impose the following weak constraint qualification

∃ M ∈ D, bounded in C(0, T ;H)× L2(0, T ;U) :

0 ∈ int T (M) in L2(0, T ;V ∗).
(23)

It is easy to show that (21), (22) give (23). One can also infer that (23)
is, as well, a consequence of

∃ [ȳ, ū] feasible : ū ∈ int{u ∈ L2(0, T ;V ); [ȳ, u] ∈ D}. (24)

Clearly (21) may not be valid if (24) is imposed. That is, constraint qual-
ification (23) is strictly weaker than the slater condition. One can compare
(23) with the Zowe and Kurcyusz constraint qualification [23] in mathemat-
ical programming.

By using an adapted regularization and penalization of (17) combined
with the penalization of (18), rather delicate duality-type estimates give the
following generalized optimality system [4]:

Theorem 3 If the pair [y∗, u∗] is optimal for the problem (17) - (19), then:∫ T

0
(y∗
′ − y′ +Ay∗ −Ay, p∗ + r∗)V ∗×V dt ≤ 0, (25)

〈w2, u
∗ − u〉L2(0,T ;U) −

∫ T

0
〈u∗ − u,B∗J−1(r∗)〉Udt ≤ 0, (26)

for any [y, u] such that [y, u∗] ∈ D and [y∗, u] ∈ D.

Moreover, summing (25) and (26) is valid for any [y, u] ∈ D and it is
also sufficient for the optimality of [y∗, u∗].

Here, p∗ is the solution of the adjoint system

−p∗′ +A∗p∗ = w1, (27)
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p∗(T ) = w, (28)

where w ∈ ∂l(y∗(T )), [w1, w2] ∈ ∂L(y∗, u∗] and J : V → V ∗ is the canonical
isomorphism, r∗ ∈ L2(0, T ;V ) is the weak limit (on a subsequence) of

rε =
1

ε
J−1(y′ε +A(t)yε −Buε − f)

with [yε, uε] being the unique optimal pair of the approximating regular-
ized/penalized optimal control problem. See [4] for more details.

Remark 1 The form (25), (26) decouples the adjoint system (27), (28)
from the constraints. In case, D = K × Uad (separate state and control
constraints), one can easily reobtain from (25) - (28) the usual form of the
optimality conditions, [3].

We briefly comment now on an example from [4] that shows that even in
the case of separate constraints, their interior may be void, while hypothesis
(22), (23) is satisfied. We consider the following optimal control problem
governed by a parabolic equation:

Min{1

2

∫
Q

(y − zd)2dx+
N

2

∫
Q
u2dx}, (29)

∂y

∂t
−∆y = f + u in Q = Ω×]0, T [, (30)

y(x, t) = 0 on Σ = ∂Ω× [0, T ], (31)

y(x, 0) = y0(x) in Ω, (32)

e(x, t) ≤ y(x, t) ≤ g(x, t) a.e. in Q, (33)

a(x, t) ≤ u(x, t) ≤ b(x, t) a.e. in Q, (34)

where Ω ⊂ Rd is a smooth bounded domain, zd ∈ L2(Q), N ≥ 0, y0 ∈
L2(Ω), f, a, b are in L∞(Q) and e, g are in C(Q̄). From (33), (34) one can
immediately infer the form of D from (19).

We ask the ”rich” admissibility hypothesis:
∃ α > 0,∃ ũ satisfying (34) such that if Y denotes the operator u → y

defined by (30) - (32), we have:
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e ≤ Y (ũ− α) ≤ Y (ũ+ α) ≤ g a.e. in Q. (35)

Relation (35) is not an interiority condition since, we may have e(x, t) =
g(x, t) in certain points, for instance e(x, t) = g(x, t) = 0 on ∂Ω × [0, T ].
Moreover ũ+α, ũ−α need not satisfy (34) and we may as well have a(x, t) =
b(x, t) on some subset.

Taking the spaces V = H1
0 (Ω), H = U = L2(Ω) and the operators

A(t) = −∆, B : H → V ∗, B = i, the canonical injection and the cost
L(y, u) as given in (29), while l = 0, one can put the example (29) - (34) in
the abstract form (17) - (19).

The condition (23) may be checked with

M = conv{[yξ, uξ]; ξ ∈ L∞(Q), ‖ξ‖L∞(Q) = 1, yξ = y(uξ), uξ = ũ+ αξ}

(notice that the space C(0, T ;H)×L2(0, T ;U) is replaced by L∞(Q) in this
example). The arguments are similar and take advantage that we work in a
functional setting and we can use comparison theorems.

In the work [6] other examples of mixed constraints, in connection with
an optimal investment problem, are discussed. The setting is similar with
the above problem governed by parabolic partial differential equations:

1

2

∫
Ω
y(x, t)2dx ≤ C(u)(t), t ∈ [0, T ],

where C(·) : U → L1(0, T ) is some given operator.

0 ≤ u(x, t) ≤ Cy(x, t) a.e. in Q.

One can establish generalized bang-bang properties for such applications,
that give almost complete information on the optimal pairs. Further appli-
cations to error estimates in discretization procedures for state constrained
optimal control problems are reported in [22].

4 An implicit parametrization approach in
the ODE setting, with equality constraints

We briefly review now the Hamiltonian approach to implicit systems, ac-
cording to [14], [15], [20], [21], [13]. Then, we show how to apply it to
optimal control problems governed by ordinary differential equations, with
equality mixed constraints.
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We underline that inequality constraints, abstract constraints, separated
constraints are also allowed under our approach, as we shall point out later.
This is a generalization of the methods developed for nonlinear programming
problems, from Tiba [21].

In the Euclidean space Rd, we consider the general implicit functions
system:

F1(x1, . . . , xd) = 0,

F2(x1, . . . , xd) = 0,

. . . . . . . . . . . .

Fl(x1, . . . , xd) = 0,

(36)

where 1 ≤ l ≤ d − 1 and Fj ∈ C1(Ω), Fj(x
0) = 0, j = 1, l, x0 ∈ Ω ⊂ Rd,

given bounded domain.

We assume the standard independence assumption

D(F1, F2, . . . , Fl)

D(x1, x2, . . . , xl)
6= 0 in x0, (37)

however this hypothesis can be dropped and the notion of generalized solu-
tion as introduced in Tiba [20], [21] can be used for the solving of (36). The
fact that the ”first” independent variables x1, . . . , xl appear in (37) can al-
ways be obtained by renumbering. Notice that condition (37) remains valid
in a neighbourhood of x0, that we denote by V ⊂ Ω.

We introduce in V the undetermined system of linear algebraic equations

v(x) · ∇Fj(x) = 0, j = 1, l (38)

and we shall use d−l solutions of (38) obtained by fixing successively the last
d−l components of the vector v(x) ∈ Rd to be the rows of the identity matrix
in Rd−l multiplied by ∆(x) = detA(x) 6= 0 (the determinant appearing in
(37)). In this way we obtain d− l independent solutions of (38) denoted by
v1(x), . . . , vd−l(x), in some arbitrary order.

Their first l components are obtained from (38) by inverting A(x), x ∈ V ,
due to (37).

The vector fields vk(x), k = 1, d− l are also continuous in V since Fj , j =
1, l are of class C1(Ω). This choice of {vk}k=1,d−l is not the unique useful
choice, [20], [21], [13]. We associate to them the following iterated type
Hamiltonian system of differential equations (weakly coupled just via the
initial conditions - that’s why we call it iterated):
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∂y1(t1)

∂t1
= v1(y1(t1)), t1 ∈ I1 ⊂ R,

y1(0) = x0,

(39)

∂y2(t1, t2)

∂t2
= v2(y2(t1, t2)), t2 ∈ I2(t1) ⊂ R,

y2(t1, 0) = y1(t1),

(40)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

∂yd−l(t1, t2, . . . , td−l)

∂td−l
= vd−l(yd−l(t1, t2, . . . , td−l)), td−l

∈ Id−l(t1, t2, . . . , td−l−1),

yd−l(t1, t2, . . . , td−l−1, 0) = yd−l−1(t1, t2, . . . , td−l−1).

(41)

Although partial differential notations are used in (39) - (41), each of
the above subsystems may be interpreted as an ordinary differential system
since just one derivative appears. The Hamiltonian character of (39) - (41)
will be obvious from their properties listed in what follows, and from the
example. Existence is valid by the Peano theorem.

Theorem 4 Under assumption (37), if l = d − 1, the system (39) - (41)
has the uniqueness property.

If 1 ≤ d ≤ d − 2, every subsystem of (39) - (41) has the uniqueness
property. Moreover, the intervals Ij(t1, t2, . . . , tj−1), j = 1, d− l may be
choosen independent of the previous parameters.

The classical conservation property of Hamiltonian systems is valid in
this general setting:

Theorem 5 For every k = 1, l, j = 1, d− l, we have:

Fk(yj(t1, t2, . . . , tj)) = 0, ∀ (t1, t2, . . . , tj) ∈ I1 × I2 × · · · × Ij ,

where I1, . . . , Ij denote the existence intervals, without the dependence on
the previous parameters, that is not necessary in fact.

The most important property of the iterated Hamiltonian type system
(39) - (41) is the fact that it provides, in a constructive manner and in
the most general situation, a parametrization of the manifold defined by
the implicit system (36), under condition (37). This is called the implicit
parametrization property:
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Theorem 6 If Fk ∈ C1(Ω), k = 1, l, with the independence property 37 and
Ij , j = 1, d− l are sufficiently small, then the mapping

yd−l : I1 × I2 × · · · × Id−l → Rd

is C1 in all its variables, regular and one-to-one on its image.

Moreover, the classical implicit function theorem follows as a special case
of the above approach if in the solution of the algebraic system (38), the last
d− l components of the vector v(x) ∈ Rd, x ∈ V , are choosen to be exactly
the rows of the identity matrix in Rd−l. This is a constructive approach
to implicit functions, [21]. We also obtain precise estimates of the existence
intervals Ij , j = 1, d− l. For instance, if V = B(x0, r) with r > 0 determined

by (37), then we may choose Ij =
[
− r

(d−l)M ,
r

(d−l)M

]
, where M > 0 is the

maximum |vj |C(V̄ ), j = 1, d− l.
As already mentioned, the hypothesis (37) can be dropped and a con-

structive notion of generalized solution of (36), using the Hausdorff - Pom-
peiu convergence may be defined.

This is done in [20], [21] where basic properties are also proved.
We introduce now the optimal control problem with equality mixed con-

straints:

Min{l(x(0), x(1))}, (42)

x′(t) = f(t, x(t), u(t)), t ∈ [0, 1], (43)

h(x(t), u(t)) = 0, t ∈ [0, 1]. (44)

Above, l : Rd ×Rd → R, f : [0, 1]×Rd ×Rm → Rd, h : Rd ×Rm → Rs,
s ≥ m, d + m − 1 ≥ s, are given mappings and x : [0, 1] → Rd is the state
variable, u : [0, 1]→ Rm is the control unknown. Such systems are recently
studied in a more general implicit form by Maria do Rosario de Pinho [16],
[17], Clarke and Pinho [8], Frankowska [10] from the point of view concerning
the maximum principle and under weak differentiability assumptions. The
formulation (42) - (44) is of Mayer type and the conditions (43), (44) give a
DAE system.

Initial conditions may be imposed in (43), but it is not necessary now.
If inequality constraints are added to (42) - (44), the classical procedure
is to introduce supplementary control variables in order to transform them
in equality constraints. Our procedure is different, without increasing the
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dimension of the control space and applies as well to abstract constraints,
separated constraints.

As general assumptions, we shall require l continous, f locally Lips-
chitzian in (x, u) and measurable in t, h of class C1 and there is a point
(x0, u0) ∈ Rd ×Rm such that

h(x0, u0) = 0 and ∇h(x0, u0) of maximal rank. (45)

Notice that, in this setting, some of the constraints (44) may be separate
state constraints or control constraints and the remaining constraints may
be of mixed type.

Under hypothesis (45), one can use Thm. 4 - 6 to obtain a constructive
parametric description of the admissible manifold for (44), denoted by A ⊂
Rd × Rm. This is not the admissibility set for the control problem (42) -
(44). However any admissible state-control trajectory should satisfy

(x(t), u(t)) ∈ A, t ∈ [0, T ]. (46)

Here and in the sequel we shall assume that the admissible controls u(t) ∈
W 1,2(0, T ;Rm), consequently (46) makes sense by regularity properties for
(43). We also recall that the regularity results for the optimal pairs Clarke
[7], Fleming and Rishel [9] allow to restrict the search for admissible pairs
by such regularity conditions.

Remark 2 This setting can be extended to weaker hypotheses on s,m and
the properties of h.

In the standard terminology for DAE system, relations (43), (44) are
semi-explicit of index one. Taking into account (44), (46) and differentiating
once, we get:

∇xh(x(t), u(t))f(t, x(t), u(t)) +∇uh(x(t), u(t), u′(t)) = 0. (47)

If ∇uh(·, ·) is invertible on A, then (47) may be put in an explicit form,
as an ODE for the control vector u(t) ∈ Rm.

The important observation is that any point in A provides a consistent
initial condition for the differential system (43), (47). This system gives a
characterization of the admissible state-control trajectories. It is elementary
to show:

Proposition 1 Any trajectory of (43), (47), starting from a point in A,
remains in A and is in W 1,2((0, s);Rd ×Rm).
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Here, (0, s) is the local existence interval (depending on the initial condi-
tion). In control theory, taking into account the form of the cost functional
(42), we also require the existence of global solutions, in [0, 1], that has to
be checked in each application.

We notice that the set of discretization points in A generated by (39) -
(41), denoted by ∪

n∈N
An, is dense in A when the discretization of I1 × I2 ×

. . .× Id−l is finer and finer.

We have, for the terminal set T = {x(1); [x(0), u(0)] ∈ A}:

Proposition 2 Under global existence for the system (43), (47), the dis-
cretized terminal set ∪

n∈N
Tn = {x(1); [x(0), u(0)] ∈ ∪

n∈N
An} is dense in T .

This is a consequence of continuity results with respect to initial con-
ditions, Barbu [1], Hartman [11] since f is locally Lipschitz in (x, u) and
similar conditions are imposed on ∇h(·, ·).

We add now to the problem (42) - (44) more constraints:

qr(x(t), u(t)) ≤ 0, r = 1, Q, t ∈ [0, 1], (48)

(x(t), u(t)) ∈ C(t), t ∈ [0, 1], (49)

where C(t) is some closed nonvoid subset, for any t ∈ [0, 1] and assume
that the admissible set for (43), (44), (48), (49) is not empty. The following
algorithm is taken into account:

Algorithm 4.7

1) Fix n = 1 and choose some discretization of I1 × I2 × . . . × Id−l, a
tolerance parameter δ etc.

2) Compute An via (39) - (41), the corresponding discretization of A.

3) Compute via (43), (47) the trajectories [x(t), u(t)], with initial condi-
tions in An.

They automatically satisfy (44).

4) Check the conditions (48), (49) for all the trajectories defined in STEP
3 (in the discretization points). This gives the set of admissible discrete
trajectories On.

5) Compute l(x(0), x(1)) for all [x, u] ∈ On and find the optimal solutions
(which may be not unique) and the optimal cost Ln.

6) If |Ln − Ln−1| < δ, then STOP!

Otherwise n := n+ 1 and GO TO STEP 2.
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This algorithm has a global character, although the problem (42) - (44),
(48), (49) is strongly nonconvex. It is enough to have just one equality con-
straint (44) (or one inequality constraint (48)) in order for the Algorithm 4.7
to work. It is also worth to mention, that it is advantageous to have many
equality constraints: the dimension of (39) - (41) is d + m − s in this case.
The dimension of the problem is given by the application. Usual routines in
Matlab solve such ODE systems in several seconds, even for d ”big”.

The convergence of Algorithm 4.7 is ensured by Prop. 2 and the con-
tinuity of l(·, ·). Other types of stopping tests in STEP 6 may be taken into
account as well.

We close this section with the following example

Example 1 We take d = s = m = 1 in (42) - (44), with hypothesis (45)
and other conditions mentioned above. Then, the constraint (44) gives a
curve in R2, with coordinates (y, v). Its parametric representation can be
obtained by the simplest Hamiltonian system:

ẏ(s) = −∂h
∂u(y(s), v(s)), s ∈ I

v̇(s) = −∂h
∂x(y(s), v(s)), s ∈ I

(50)

with initial condition

y(0) = x0, v(0) = u0. (51)

Any admissible trajectory (x(t), u(t)), t ∈ [0, 1], should lie on the curve
defined by (50), (51) and is, in fact, completely determined by its initial
conditions. The admissibility equation (47) for u has the form

u′(t(s)) = −
∂h
∂x

(x(t,s),u(t,s))
∂h
∂u

(x(t,s),u(t,s))
f(t, x(t, s), u(t, s)), t ∈ [0, 1]

x(0, s) = y(s), u(0, s) = v(s)
(52)

(with obvious notations for the derivatives in s, respectively t) and should
be solved together with (43).

If l(a, b) = (a−4)2 +(b−15)2 and f(t, x, u) = x−5u+10t+2, h(x, u) =
x− 5u− 4, then x(t) = 5t2 + 6t+ 4, u(t) = t2 + 1.2t give an optimal pair.
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