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Abstract

Let B be a Banach space, α ≤ a < b ≤ β, K ∈ C([α, β]2×B2,B), g ∈
C([α, β],B) and h ∈ C([α, β], [α, β]). In this paper, using the Picard
operator technique, we will study, in C([α, β],B), the following integral
equation

x(t) =

∫ b

a

K(t, s, x(s), x(h(s))ds, t ∈ [α, β].
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Babeş-Bolyai University Cluj-Napoca, Romania and Romanian Academy, Bucharest, Ro-
mania

15



16 A. Petruşel, I.A. Rus

1 Introduction and Preliminaries

Let X be a nonempty set and A : X → X be a given operator. Then,
we denote by FA := {x ∈ X : x = A(x)} the fixed point set for A and by
An = A ◦ · · · ◦A (n ∈ N∗) the iterates of A.

Definition 1 Let (X, d) be a metric space and let A : X → X be an
operator. By definition, the operator A is said to be:

(i) a Picard operator if FA = {x∗} and An(x)→ x∗ as n→∞, for all
x ∈ X.

(ii) a c-Picard operator if A is a Picard operator, c > 0 and

d(x, x∗) ≤ cd(x,A(x)), for all x ∈ X.

For example, if (X, d) is a complete metric space and A : X → X is a
k-contraction (i.e., k ∈ (0, 1) and the following relation holds

d (A (x) , A (y)) ≤ kd (x, y) , for all x, y ∈ X),

then A is a c-Picard operator with c = 1
1−k . For the Picard operator theory

see [11], [18], [12], [18], · · ·
The following result is essential in our approach.

Theorem 1 (Saturated principle of contraction [17]) Let (X, d) be a
complete metric space and f : X → X be an k-contraction. Then, the
following conclusions hold:

(i) There exists x∗ ∈ X such that,

Ffn = {x∗}, ∀ n ∈ N.

(ii) For all x ∈ X, fn(x)→ x∗ as n→∞.

(iii) d(x, x∗) ≤ ψ(d(x, f(x))), for all x ∈ X, where ψ(t) = t
1−k , t ≥ 0.

(iv) If {yn}n∈N is a sequence in X such that

d(yn, f(yn))→ 0 as n→∞,

then, yn → x∗ as n→∞.

(v) If {yn}n∈N is a sequence in X such that

d(yn+1, f(yn))→ 0 as n→∞,

then, yn → x∗ as n→∞.
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(vi) If Y ⊂ X is a closed subset such that f(Y ) ⊂ Y , then x∗ ∈ Y .
Moreover, if in addition Y is bounded, then⋂

n∈N
fn(Y ) = {x∗}.

By the above result, several other properties of the fixed point equation
can be deduced. For more details on the above approach see [17].

2 Existence and Uniqueness

Let (B, ‖·‖) be a Banach space, α.β, a, b be real numbers such that α ≤ a <
b ≤ β, K ∈ C([α, β]2 × B2,B), g ∈ C([α, β],B) and h ∈ C([α, β], [α, β]). In
this paper, using the Picard operator technique, we will study, in C([α, β],B),
the following integral equation

x(t) =

∫ b

a
K(t, s, x(s), x(h(s))ds+ g(t), t ∈ [α, β]. (1)

We have the following existence and uniqueness result, which extends a
theorem given in [8].

Theorem 2 Let us consider the equation (1) under the above assumptions
on K, g, h. We, additionally, suppose:

(i) there exist L1, L2 > 0 such that

‖K(t, s, , u1, v1)−K(t, s, u2, v2)‖ ≤ L1‖u1 − v1‖+ L2‖u2 − v2‖,

for each t, s ∈ [α, β], u1, v1, u2, v2 ∈ B.
(ii) (L1 + L2)(b− a) < 1.
Then, we have the following conclusions:
(a) the equation (1) has in C([α, β],B) a unique solution x∗;
(b) for all x0 ∈ C([α, β],B), the sequence (xn)n∈N defined by

xn+1(t) :=

∫ b

a
K(t, s, xn(h(s)))ds+ g(t)

converges uniformly on [α, β] to x∗.
(c) if (yn)n∈N is a sequence in C([α, β],B) such that the sequence (zn)n∈N

defined by

zn(t) := yn(t)−
∫ b

a
K(t, s, yn(s), yn(h(s)))ds− g(t), t ∈ [α, β]
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converges uniformly to 0 on [α.β], then (yn)n∈N converges uniformly on [α, β]
to x∗ as n→∞.

(d) if (un)n∈N is a sequence in C([α, β],B) such that the sequence (vn)n∈N
defined by

vn(t) := un+1(t)−
∫ b

a
K(t, s, un(s), un(h(s)))ds− g(t), t ∈ [α, β]

converges uniformly to 0 on [α.β], then (un)n∈N converges uniformly on
[α, β] to x∗ as n→∞.

Proof. Let us consider the operator A : C([α, β],B) → C([α, β],B)
defined by

Aa,bx(t) :=

∫ b

a
K(t, s, x(s), x(h(s)))ds+ g(t), t ∈ [α, β].

It is obvious that the solution set of the equation (1) coincides with the fixed
point set FAa,b

of the above mentioned operator.

From (i) and (ii) we can prove that Aa,b is a (L1 +L2)(b−a)-contraction
on the Banach space (C([α, β],B), ‖·‖∞), where ‖·‖∞ is the usual supremum
norm given by ‖x‖∞ := max

t∈[α,β]
‖x(t)‖. So, the proof follows by the Saturated

Principle of Contraction. �

Remark 1 1) By the Saturated Principle of Contraction (see Theorem 1
and [17]) we also get that

‖x− x∗‖∞ ≤
1

1− (L1 + L2)(b− a)
‖x−Aa,bx‖∞, for all x ∈ C([α, β],B).

This means that Aa,b is a 1
1−(L1+L2)(b−a) -Picard operator.

2) If B := Rm or B := Cm, Theorem 2 gives an existence and uniqueness
result for a system of integral equations. The only difference is the fact
that, if we are working with an Rm+ -norm on C([α, β],Km) (where K =
R or C), then the result follows by applying Perov’s fixed point theorem, see
for example [8].

3) If B := `p(K) (where 1 < p ≤ ∞), Theorem 2 gives an existence and
uniqueness result for an infinite system of integral equations.

4) For the fixed point technique in the theory of integral and functional-
integral equations see [5], [9], [4], [7], [3], [6], [1], [8], [10], [15], · · ·
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3 Data dependence with respect to K and g

Let us consider now the following equation

x(t) =

∫ b

a
K̃(t, s, x(s), x(h(s))ds+ g̃(t), t ∈ [α, β], (2)

where K̃ ∈ C([α, β]2 × B2,B) and g̃ ∈ C([α, β],B).

Let us suppose that there exist η1, η2 > 0 such that

‖K(t, s, u, v)− K̃(t, s, u, v)‖ ≤ η1, for all t, s ∈ [α, β] and u, v ∈ B (3)

and

‖g(t)− g̃(t)‖ ≤ η2, for all t ∈ [α, β]. (4)

Then, by Remark 1 and Theorem 2, we have the following data dependence
result.

Theorem 3 Let us consider the equation (1) satisfying the hypotheses of
Theorem 2. We also consider equation (2) under the above conditions. We
suppose that (2) has at least one solution. Then

‖y∗ − x∗‖∞ ≤
1

1− (L1 + L2)(b− a)
(η1(b− a) + η2) ,

for all solutions y∗ of the equation (2).

Indeed,

‖y∗ − x∗‖∞ ≤
1

1− (L1 + L2)(b− a)
‖y∗ −Aa,by∗‖∞.

Moreover

‖y∗(t)−Aa,by∗(t)‖ ≤∫ b

a
‖K̃(t, s, y∗(s), y∗(h(s)))−K(t, s, y∗(s), y∗(h(s)))‖ds+ ‖g(t)− g̃(t)‖ ≤

η1(b− a) + η2, for all t ∈ [α, β].

Thus

‖y∗ −Aa,by∗‖∞ ≤ η1(b− a) + η2,

and the above conclusion follows.
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4 Ulam stability property

An important stability concept is that of Ulam-Hyers stability of the fixed
point equation. The following notion was given by I.A. Rus in [14]. See also
[16].

Definition 2 Let (X, d) be a metric space and A : X → X be an operator.
Then, the fixed point equation

x = A(x) (5)

is said to be Ulam-Hyers stable if there exists c > 0 such that, for any ε > 0
and any ε-solution y∗ ∈ X of (5), i.e.,

d (y∗, f (y∗)) ≤ ε, (6)

there exists a solution x∗ of (5) such that

d (x∗, y∗) ≤ cε. (7)

We have the following abstract result (see also I. A. Rus [14]) concerning
the Ulam-Hyers stability of the fixed point equation (5).

Theorem 4 (Ulam-Hyers stability) Let (X, d) be a metric space and A :
X → X be a c-Picard operator. Then, the fixed point equation (5) is Ulam-
Hyers stable.

In what follows, we will consider the Ulam-Hyers stability property
for equation (1).

Theorem 5 Consider the equation (1). Suppose that all the assumptions
of Theorem 2 hold. Then, the equation (1) is Ulam-Hyers stable.

Proof. The conclusion follows by Theorem 2, Theorem 4 and the asser-
tion 1) from Remark 1. �

5 Gronwall type lemmas

The following result is an abstract Gronwall lemma, see [13]. See also [11],
[18], [7], [2], · · ·
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Theorem 6 Let (X, d,�) be an ordered metric space and A : X → X be
an operator. We suppose:

(i) A is increasing with respect to �;
(ii) A is a Picard operator with FA = {x∗}.

Then, the following conclusions hold:
(a) x ∈ X, x � A(x) implies x � x∗;
(b) x ∈ X, x � A(x) implies x � x∗.

Using the above abstract Gronwall lemma we can prove the following
result.

Theorem 7 Let us consider the equation (1) and suppose that all the hy-
potheses of Theorem 2 are satisfied. Let x∗ be the unique solution of equation
(1). In addition, we suppose:

(i) (B, ‖ · ‖,�) is an ordered Banach space;
(ii) the operator K(t, s, ·, ·) : B2 → B2 is increasing, for each (t, s) ∈

[α, β]2.
Then, the following conclusions hold:

(1) if x ∈ C([α, β],B) is a solution of the inequality

x(t) �
∫ b

a
K(t, s, x(s), x(h(s))ds+ g(t), t ∈ [α, β], (8)

then x � x∗.
(2) if x ∈ C([α, β],B) is a solution of the inequality

x(t) �
∫ b

a
K(t, s, x(s), x(h(s))ds+ g(t), t ∈ [α, β], (9)

then x � x∗.

Proof. By our assumption (ii), it follows that the operator

A : C([α, β],B)→ C([α, β],B),

given by

Ax(t) :=

∫ b

a
K(t, s, x(s), x(h(s))ds+ g(t), t ∈ [α, β]

is increasing with respect to the following partial ordering on C([α, β],B)

x ≤ y if and only if x(t) � y(t).

Moreover, by the proof of Theorem 2, we get that A is a Picard operator.
The conclusion follows by the above theorem. �
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6 Data dependence with respect to a and b

In order to study the data dependence problem for equation with respect
to a and b, we consider the following equation

x(t, a, b) =

∫ b

a
K(t, s, x(s, a, b), x(h(s), a, b)ds+ g(t), t ∈ [α, β], (10)

where ∈ [α, β] and (a, b) ∈ T := {(u, v) : α ≤ u ≤ v ≤ β}.
We also suppose that K ∈ C([α, β]2 × B2,B), g ∈ C([α, β],B) and h ∈

C([α, β], [α, β]).

We are looking for a solution x∗ ∈ C([α, β]×T,B). We endow the space
C([α, β]× T,B) with the norm ‖x‖∞ := max

[α,β]×T
‖x(t, u, v)‖.

We notice that (10) is a fixed point equation with respect to the operator
A : C([α, β]× T,B)→ C([α, β]× T,B) given by

Ax(t, a, b) :=

∫ b

a
K(t, s, x(s, a, b), x(h(s), a, b))ds+ g(t), t ∈ [α, β].

We also suppose that the assumption (i) and (ii) in Theorem 2 holds, with
the following modification of (ii): we suppose

(ii)′ (L1 + L2)(β − α) < 1.

It is obvious that (ii)′ implies (ii). Then, by Theorem 2 we obtain that
A is a contraction. Thus, by Banach’s contraction principle, we obtain the
following result.

Theorem 8 Let us consider the equation (10) under the above assumptions
on K, g, h. We, additionally, suppose:

(i) there exist L1, L2 > 0 such that

‖K(t, s, , u1, v1)−K(t, s, u2, v2)‖ ≤ L1‖u1 − v1‖+ L2‖u2 − v2‖,

for each t, s ∈ [α, β], u1, v1, u2, v2 ∈ B.

(ii)’ (L1 + L2)(β − α) < 1.

Then, we have the following conclusions:

(a) the equation (10) has in C([α, β]× T,B) a unique solution x∗;

(b) the unique solution of the equation (10) is continuous with respect to
a and b, where (a, b) ∈ T .
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Proof. (a) the conclusion follows by Banach’s contraction principle
applied for A.

(b) If (ii)’ takes place, then equation (1) has a unique solution for each
(a, b) ∈ T . On the other hand, if x∗ is the unique solution of the equation
(10), then x∗(·; a, b) ∈ C([α, β],B) is a solution of the equation (1). Thus,
x∗(·; a, b) is continuous with respect to a and b, (a, b) ∈ T . �
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