ISSN 2066-6594

A CLASS OF FUNCTIONAL-INTEGRAL EQUATIONS VIA PICARD OPERATOR TECHNIQUE *

Adrian Petruşel[†], Ioan A. Rus[‡]

Dedicated to Professor Mihail Megan on the occasion of his 70th anniversary

Abstract

Let \mathbb{B} be a Banach space, $\alpha \leq a < b \leq \beta$, $K \in C([\alpha, \beta]^2 \times \mathbb{B}^2, \mathbb{B}), g \in C([\alpha, \beta], \mathbb{B})$ and $h \in C([\alpha, \beta], [\alpha, \beta])$. In this paper, using the Picard operator technique, we will study, in $C([\alpha, \beta], \mathbb{B})$, the following integral equation

$$x(t) = \int_a^b K(t, s, x(s), x(h(s))ds, \ t \in [\alpha, \beta].$$

MSC: 45G10; 47H10; 47H30; 45M10; 45N05.

keywords: weakly Picard operator; functional-integral equation; successive approximations; data dependence; Ulam stability; Gronwall lemma.

^{*}Accepted for publication on February 20, 2018

[†]**petrusel@math.ubbcluj.ro** Address: Faculty of Mathematics and Computer Science, Babeş-Bolyai University Cluj-Napoca, Romania and Academy of Romanian Scientists

[‡]iarus@math.ubbcluj.ro Address: Faculty of Mathematics and Computer Science, Babeş-Bolyai University Cluj-Napoca, Romania and Romanian Academy, Bucharest, Romania