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Abstract

One of the main properties of solutions of nonlinear Caputo frac-
tional neural networks is stability and usually the direct Lyapunov
method is used to study stability properties (usually these Lyapunov
functions do not depend on the time variable). In this paper we give a
brief overview of the most popular fractional order derivatives of Lya-
punov functions and these derivatives are applied to various types of
neural networks to illustrate their advantages/disadvantages. We show
the quadratic Lyapunov functions and Lyapunov functions which do
not depend directly on the time variable and their Caputo fractional
derivatives are not applicable in some cases when one studies stability
properties. Some suficient conditions using time dependent Lyapunov
functions are obtained and illustrated on some particular nonlinear
Caputo fractional neural networks.

MSC: 34A34, 34A08, 34D20

keywords: nonlinear Caputo fractional neural networks, Lyapunov func-
tions, stability, fractional derivative of Lyapunov functions.

∗Accepted for publication on February 20, 2018
†Ravi.Agarwal@tamuk.edu Department of Mathematics, Texas A&M University-

Kingsville, Kingsville, TX 78363, USA;
‡snehri@gmail.com University of Plovdiv Paisii Hilendarski, Plovdiv, Bulgaria;
§donal.oregan@nuigalway.ie School of Mathematics, Statistics and Applied Mathe-

matics, National University of Ireland, Galway, Ireland

179



180 R. Agarwal, S. Hristova and D. O’Regan

1 Introduction

Fractional calculus arises naturally in physics, biological, chemical and en-
gineering (see, for example, [8], [11], [25]) and fractional order models are
used when one considers memory and hereditary properties of various mate-
rials and processes ([7]). Neural networks in biology, coupled lasers, wireless
communication and power-grid networks in physics and engineering ([26],
[22], [28]) are modeled by fractional order differential equations.

In controlling nonlinear systems, the Lyapunov second method provides
a way to analyze the stability of the system without explicitly solving the
differential equations and stability results concerning integer-order neural
networks can be found in [12], [18], [29]. However Lyapunov stability theory
for fractional order systems has not been developed until recently (see [15],
[16]) so establishing stability sufficient criteria for fractional-order neural
networks (FONN) is necessary and challenging. Fractional order Lyapunov
stability theory was studied for various types of fractional neural networks
using quadratic Lyapunov functions (see [7], [19], [20], [31]) and the uniform
stability of fractional-order neural networks with delay was studied in [7].
Usually quadratic Lyapunov functions are used and it leads to a restriction
to Lipschitz activation functions. In this paper we extend the fractional
Lyapunov method to investigate stability behaviour of equilibrium points of
neural networks. In particular with non-Lipschitz activations functions we
apply Lyapunov functions depending directly on time. We show in the case
of variable coefficients and non-Lipschitz activation functions in FONN that
Lyapunov functions depending directly on the time variable and its Caputo
fractional Dini derivative could be successfully applied to study stability.

In this paper we consider fractional derivatives with order q ∈ (0, 1).
The Riemann–Liouville (RL) fractional derivative of order q ∈ (0, 1) of m(t)
is given by (see, for example, [23])

RL
t0 D

q
tm(t) =

1

Γ (1− q)
d

dt

t∫
t0

(t− s)−qm(s)ds, t ≥ t0

where Γ(.) denotes the Gamma function.
The Caputo fractional derivative of order q ∈ (0, 1) is defined by (see,

for example, [23])

C
t0D

q
tm(t) =

1

Γ (1− q)

t∫
t0

(t− s)−qm′(s)ds, t ≥ t0. (1)
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In this paper we present various definitions of fractional order deriva-
tives of Lyapunov functions and compare them and using examples we dis-
cuss their advantages and disadvantages. Then fractional order Lyapunov
stability theory is proposed to FONN. Some stability sufficient criteria for
various types of fractional-order neural networks (using the appropriate frac-
tional derivative of Lyapunov functions) are provided and illustrated with
examples.

2 Lyapunov functions and their derivatives among
the fractional differential equation

We first consider the derivative of Lyapunov functions among the studied
fractional differential equation.

Consider the initial value problem (IVP) for the nonlinear Caputo frac-
tional differential equations (FrDE)

C
t0D

q
tx(t) = f(t, x(t)) for t ∈ [t0, t0 + T ), x(t0) = x0, (2)

where x ∈ Rn, f ∈ C[[t0, t0 +T )×Rn,Rn], t0 ∈ R+, x0 ∈ Rn is given initial
data, T ≤ ∞.

Let x(t), t ∈ [t0, t0 + T ), be a solution of the IVP for the FrDE (2) and
let V (t, x) be a Lyapunov function, i.e. V (t, x) : [t0, t0 + T ) × ∆ → R+ is
continuous on [t0, t0 + T )×∆ and it is locally Lipschitzian with respect to
its second argument, where ∆ ⊂ Rn, 0 ∈ ∆.

In the literature there are three types of derivatives of Lyapunov func-
tions among solutions of fractional differential equations used to study sta-
bility properties:

- first type– Let x(t) be a solution of IVP for FrDE (2). Then the
Caputo fractional derivative of the Lyapunov function V (t, x(t))
among the FrDE (2) is defined by

C
t0D

q
tV (t, x(t)) =

1

Γ (1− q)

t∫
t0

(t− s)−q d
ds

(
V (s, x(s))

)
ds,

t ∈ (t0, t0 + T ). (3)

This type of derivative is applicable for continuously differentiable Lya-
punov functions. It is used mainly for quadratic Lyapunov functions
to study several stability properties of fractional differential equations
(see, for example, [15]).
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- second type– this type of derivative of V (t, x) among FrDE (2) is in-
troduced in [13]:

D+
(2)V (t, x) = lim sup

h→0

1

hq

[
V (t, x)− V (t− h, x− hqf(t, x))

]
,

t ∈ (0, T ), x ∈ ∆. (4)

Note the operator defined by (4) has no memory (the memory is typical
for fractional derivatives).

Remark 1. In general D+
(2)V (t, x(t)) 6= C

t0D
q
tV (t, x(t)) where x(t) is

a solution of (2).

Now, let us recall the remark in [9] concerning definition (4) where
V (t− h, x− hqf(t, x)) is defined by

V (t− h, x− hqf(t, x)) =

[
t−t0
h

]∑
r=1

(−1)r+1
qCrV (t− rh, x− hqf(t, x)),

where qCr = q(q−1)...(q−r+1)
r! .

Following this notation the fractional derivative of the Lyapunov func-
tion among the FrDE (2) is defined by

D+
(2)V (t, x) = lim sup

h→0

1

hq
[V (t, x)−

−
[
t−t0
h

]∑
r=1

(−1)r+1
qCrV (t− rh, x− hqf(t, x))]. (5)

The derivative (5) has memory and it depends on the initial time
t0. It is closer to both, the Grunwald-Letnikov fractional derivative
and the Riemann-Liouville fractional derivative, than to the Caputo
fractional derivative of a function. It does not depend on the initial
value V (t0, x0) which is typical for the Caputo derivative. We will call
the derivative (5) the Dini fractional derivative of the Lyapunov
function. The Dini fractional derivative is applicable for continuous
Lyapunov functions.

Remark 2. In the general case D+
(2)V (t, x) 6= D+

(2)V (t, x) (see Exam-

ple 1, Case 2.1 and Case 2.2).
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- third type - the derivative of the Lyapunov function V (t, x) is defined
by:

c
(2)D

q
+V (t, x; t0, x0) = lim sup

h→0+

1

hq

{
V (t, x)− V (t0, x0)

−
[
t−t0
h

]∑
r=1

(−1)r+1
qCr

(
V (t− rh, x− hqf(t, x))− V (t0, x0)

)}
,

for t ∈ (t0, t0 + T )

(6)

or its equivalent

c
(2)D

q
+V (t, x; t0, x0) = lim sup

h→0+

1

hq

{
V (t, x)

+

[
t−t0
h

]∑
r=1

(−1)r qCrV (t− rh, x− hqf(t, x))

}
− V (t0, x0)

(t− t0)qΓ(1− q)
for t ∈ (t0, t0 + T ).

(7)

The derivative (7) depends significantly on both the fractional order
q and the initial data (t0, x0) of IVP for FrDE (2) and this type of
derivative is close to the idea of the Caputo fractional derivative of a
function.

We call the derivative given by (6) or its equivalent (7) the Caputo
fractional Dini derivative. This type of derivative is applicable for
continuous Lyapunov functions.

Remark 3. The equality c
(2)D

q
+V (t, x; t0, x0) = D+

(2)V (t, x)− V (t0,x0)
(t−t0)qΓ(1−q) , t ∈

(t0, t0 + T ), holds and for any t ∈ (t0, t0 + T ), x0 ∈ Rn

c
(2)D

q
+V (t, x; t0, x0) = D+

(2)V (t, x), if V (t0, x0) = 0

c
(2)D

q
+V (t, x; t0, x0) < D+

(2)V (t, x), if V (t0, x0) > 0.

From the literature we note that one of the sufficient conditions for sta-
bility is connected with the sign of the derivative of the Lyapunov function.

EXAMPLE 1. Consider the IVP for the scalar linear FrDE

C
0 D

q
tx(t) = g(t)x for t > 0, x(0) = x0, (8)
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where q ∈ (0, 1), g(t) = −0.5
RL
0 Dq

(
sin2(t)+0.1

)
sin2(t)+0.1

(the graph of the function

g(t) for various values of q is given on Figure 1). The sign of the function
g(t) is changeable.

Case 1. Consider the quadratic Lyapunov function (used in stability of
neural networks [7], [19], [20], [31]) i.e. V (t, x) = x2. Let x(t) be a solution
of IVP for FrDE (8). Then according to [10] we get

C
0 D

q
tV (t, x(t)) =

2

Γ (1− q)

t∫
0

(t− s)−q x(s)x′(s)ds ≤ 2x(t) C
0 D

q
tx(t)

= 2(x(t))2g(t).

The sign of C
0 D

q
tV (t, x(t)) is changeable.

Case 2. Consider the function V (t, x) = (sin2(t) + 0.1)x2.

Case 2.1: Caputo fractional derivative. Let x(t) be a solution of IVP for
FrDE (8). From (3) we obtain

C
0 D

q
tV (t, x(t)) =

1

Γ (1− q)

t∫
0

(t−s)−q(2(sin2(s)+0.1)x(s)x′(s)+sin(2s)x2(s))ds.

The fractional derivative of this function V among IVP for FrDE (8) is
difficult to obtain so it is difficult to discuss its sign.

Case 2.2: Use formula (4) and obtain

D+
(8)V (t, x) = lim sup

h→0

1

hq

[
(sin2(t) + 0.1)x2 − (sin2(t− h) + 0.1)(x− hqxg(t))2

]
= 2x2(sin2(t) + 0.1)g(t),

i.e. the sign of the derivative D+
(8)V (t, x) is changeable.
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Case 2.3: Dini fractional derivative. From formula (5) we obtain

D+
(8)V (t, x) = lim sup

h→0

1

hq

[
(sin2(t) + 0.1)x2

−
[ t
h

]∑
r=1

(−1)r+1
qCr(sin

2(t− rh) + 0.1)(x− hqxg(t))2
]

= x2 lim sup
h→0

1

hq

[
(sin2(t) + 0.1)

+

[ t
h

]∑
r=1

(−1)r qCr(sin
2(t− rh) + 0.1)(1− hqg(t))2

]
= x2 lim sup

h→0

1

hq

[
(sin2(t) + 0.1)(1− (1− hqg(t))2)

+ (1− hqg(t))2

[ t
h

]∑
r=0

(−1)r qCr(sin
2(t− rh) + 0.1)

]
= 2x2g(t)(sin2(t) + 0.1) + x2 RL

0 Dq
(

sin2(t) + 0.1
)

= 0.

Case 2.4: Caputo fractional Dini derivative . According to Remark 3
and Case 2.3 the inequality

c
(8)D

q
+V (t, x; 0, x0) = D+

(8)V (t, x)− 0.1x2
0

tqΓ(1− q)
= − 0.1x2

0

tqΓ(1− q)
≤ 0

holds.

Therefore, for (8) both the Dini fractional derivative and the Caputo
fractional Dini derivative seem to be more applicable than the Caputo frac-
tional derivative of Lyapunov function.

�

Remark 4. The above example notes that the quadratic function for study-
ing stability properties of neural network might not be successful (especially
when the right side parts depend directly on the time variable). Formula
(4) is not appropriate for applications to fractional equations. The most
general derivatives for non-homogenous fractional differential equations are
Dini fractional derivatives and Caputo fractional Dini derivatives.
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Figure 1. Example 1. Graph of the

function g(t) for various values of q.
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3 Stability for fractional-order neural networks

3.1 System Description

Consider the general model of FONN

C
0 D

q
txi(t) = −ci(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t)) + Ii(t) for t > 0, i = 1, 2, . . . n,

(9)
or equivalently

C
0 D

q
tx(t) = −C(t)x(t) +A(t)f(x(t)) + I(t) for t > 0 (10)

where n represents the number of units in the network

x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn, C(t) = diag(ci(t)), A(t) = {aij(t)}

corresponds to the connection of the i-th neuron to the j-th neuron at time
t, f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T is the activation function
of the neurons, and I = [I1, I2, . . . , In]T is an external bias vector.

Remark 5. The stability analysis of FONN (9) is studied in [20] in the
special case cj(t) ≡ cj = const, j = 1, 2, . . . , n but the main result, Lemma 5
(in [20]), is not correct. For example, for the function y(t) = −(sin(t))2 the
fractional derivative C

0 D
q
t y(t) ≤ 0, t ∈ [0, 2] (see Figure 2) but the function

y(t) is not decreasing on [0, 2].

Definition 1. A vector x∗ ∈ Rn is an equilibrium point of Caputo FONN
(10), if and only if the equality 0 = −Cx∗ + A(t)f(x∗) + I(t) holds for all
t > 0.
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Figure 3. Example 2. Graph of the

function f(t) =
√

2 erf−1(2t− 1).
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Figure 4. Example 2. Graph of the

function f(u) = log
(

u
1−u

)
.

We will discuss the equilibrium points on some FONN with various ac-
tivation functions. It will be useful for stability analysis.
EXAMPLE 2. Let n = 1 and consider the scalar linear FONN

C
0 D

q
tx(t) = −cx(t) + a(t)f(x(t)) + I for t > 0, (11)

where q ∈ (0, 1), c is a constant.
Case 1. Let I = 0.5πc and the activation function be the cosine function

f(u) = cos(u) (see [24]).
The point x∗ = 0.5π is an equilibrium point of FONN (11) because

−c0.5π + a(t)f(0.5π) + 0.5πc = 0 for all t > 0.
Case 2. Let I = 0.5c and the activation function be the Probit function

f(u) =
√

2 erf−1(2u − 1) (see Figure 3) where erf(u) = 2√
π

∫ u
0 e
−t2dt is the

error function. Then erf−1(0) = 0.
The point x∗ = 0.5 is an equilibrium point of FONN (11) because −c0.5+

a(t)f(0.5) + 0.5c = 0 for all t > 0.
Case 3. Let I = 0.5c and the activation function be the Logit function

f(u) = log
(

u
1−u

)
(see Figure 4). Then f(0.5) = 0.

The point x∗ = 0.5 is an equilibrium point of Caputo FONN (11) because
−c0.5 + a(t)f(0.5) + 0.5c = 0 for all t > 0.

�
EXAMPLE 3. Let n = 2 and consider the system of FONN

C
0 D

q
tx1(t) = −c1x1(t) + a11(t) arctan(x1(t)) + a12 cos(x2(t)) + I1,

C
0 D

q
tx2(t) = −c2x2(t) + a21(t) arctan(x1(t)) + a22 cos(x2(t)) + I2 for t > 0,

(12)

where q ∈ (0, 1), ci, ai,j , i, j = 1, 2 are constants.
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The point x∗ = (0, 0) is an equilibrium point of Caputo FONN (12) if
I1 = −a12, I2 = −a22.

The FONN (12) is considered in the special case q = 0.88, a11(t) ≡
0.5, a21(t) ≡ −0.9, a12 = 1, a22 = −0.7 in [19].

�
Assumption A1. Let the Caputo FONN (9) have an equilibrium point

x∗.
If assumption A1 is satisfied then we can shift the equilibrium point x∗

of system (9) to the origin. The transformation y(t) = x(t) − x∗ is used to
put system (9) in the following form:

C
0 D

q
t yi(t) = −ci(t)yi(t) +

n∑
j=1

aij(t)(fj(yj(t) + x∗j )− fj(x∗j ))

for t > 0, i = 1, 2, . . . n, (13)

or equivalently

C
0 D

q
t y(t) = −C(t)y(t) +A(t)F (y(t)) for t > 0 (14)

where F (u) = [F1(u1), F2(u2), . . . , Fn(un)]T ,
Fj(uj) = fj(uj + x∗j )− fj(x∗j ), j = 1, 2, . . . , n.

3.2 Some results for Caputo fractional differential equations.

We will give some results for Caputo fractional derivatives and Caputo frac-
tional differential equations which will be used for our main results concern-
ing stability.

Lemma 1. ([10]). Let P ∈ Rn×n be constant, symmetric and positive
definite matrix and X(t) : R+ → Rn be a function with the Caputo fractional
derivative existing.

Then 1
2
C
0 D

q
t

(
xT (t)Px(t)

)
≤ xT (t)P C

0 D
q
tx(t), t ≥ 0.

Lemma 2. (Theorem 11 [16]). Let x = 0 be an equilibrium point for (2)
with T =∞. Assume there exists a Lyapunov function V (t, x) such that

(i) α1(||x||) ≤ V (t, x) ≤ α2(||x||), t ≥ 0, x ∈ ∆,

(ii) C
0 D

β
t V (t, x(t)) ≤ −α3(||x(t)||), t > 0 where β ∈ (0, 1), x(t) is a

solution of (2) and functions αi ∈ C([0,∞), [0,∞)), i = 1, 2, 3 are
strictly increasing and αi(0) = 0.
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Then the equilibrium point of (2) is asymptotically stable.

For the Caputo fractional Dini derivative we have:

Lemma 3. (Theorem 3[3]).Assume x = 0 be an equilibrium point for (2)
with T = ∞. Assume there exists a Lyapunov function V (t, x) : V (t, 0) =
0, t ≥ 0, such that

(i) α1(||x||) ≤ V (t, x) ≤ α2(||x||), t ≥ 0, x ∈ ∆,

(ii) c
(2)D

q
+V (t, x; 0, x0) ≤ −α3(||x||), t > 0, x, x0 ∈ ∆ where functions

αi ∈ C([0,∞), [0,∞)), i = 1, 2, 3 are strictly increasing and αi(0) = 0.

Then the equilibrium point of (2) is asymptotically stable.

3.3 Stability Analysis.

We will study stability properties of several different types of FONN (2)
using different types of Lyapunov functions and their fractional derivatives
given in Section 2.

3.3.1. Lipschitz activation functions and quadratic Lyapunov
functions.

We assume the following:

Assumption A2. Let the activation function of the neurons be Lip-
schitz, i.e. there exist positive numbers Li > 0, i = 1, 2, . . . , n such that
|fi(u)− fi(v)| ≤ Li|u− v|, for u, v ∈ R.

Assumption A3. There exists positive numbersMi,j such that |ai,j(t)| ≤
Mi,j , for t > 0.

Assumption A4. The inequality λ > 0.5Lmax holds, where αi =∑n
j=1

(
MjiLi +MijLj

)
, Lmax = max{αi, i = 1, 2, . . . , n}, λ = min{cj , j =

1, 2, . . . , n}.

Remark 6. If assumption A2 is satisfied then the function F in FONN (14)
satisfies |Fj(u)| ≤ Lj |u|, j = 1, 2, . . . , n for any u ∈ R.

The case, when the functions of the connection of the i-th neuron to
the j-th neuron at time t in FONN (9) are bounded is studied using the
quadratic Lyapunov function (for integer order see [21]). We will provide
only one result.
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Theorem 1. Let cj(t) ≡ cj > 0, j = 1, 2, . . . , n and assumptions A1, A2,
A3, A4 are satisfied.

Then the equilibrium point x∗ of Caputo FONN (9) is asymptotically
stable.

P r o o f: Consider the quadratic functions V (t, x) = xTx. Let x(t) be a
solution of the FONN (14). Then applying Lemma 1 we get

C
0 D

q
tV (t, x(t)) ≤ −2

n∑
i=1

cix
2
i (t) + 2

n∑
i=1

n∑
j=1

|aij ||Fj(xj(t))| |xi(t)|

≤ −2λ

n∑
i=1

x2
i (t) +

n∑
i=1

n∑
j=1

MijLj(x
2
j (t) + x2

i (t))

≤ −2λ

n∑
i=1

x2
i (t) +

n∑
i=1

x2
i (t)
( n∑
j=1

(
MjiLi +MijLj

))
≤ −2

(
λ− 0.5Lmax

) n∑
i=1

x2
i (t).

(15)

Inequality (15) and Lemma 2 prove the claim.
�

EXAMPLE 4. Consider the system of FONN (12). The point x∗ = (0, 0)
is an equilibrium point of Caputo FONN (12) if I1 = −a12, I2 = −a22 (see
Example 3).

In the special case q = 0.88, a11(t) ≡ 0.5, a21(t) ≡ −0.9, a12 = 1, a22 =
−0.7 in [19] the authors prove the solution converges to zero asymptotically
for c1 = 2, c2 = 3.

Now, we will prove that for any q ∈ (0, 1) and ci > 1.65, i = 1, 2 the
zero equilibrium is asymptotically stable. Indeed, the functions arctan(x)
and cos(x) are Lipschitz with L = 1, α1 = 2.9, α2 = 3.3, Lmax = 3.3 and for
ci > 1.65 and according to Theorem 1 the claim is true.

�

3.3.2. Non-Lipschitz activation functions and quadratic Lya-
punov functions.

There are many types of activation functions which are not Lipschitz
(see Example 2, Cases 2 and 3). In this case we assume:

Assumption A5. There exists a function ξ ∈ C(R+,R) such that
for any solution x(t) of the FONN (14) and i = 1, 2, . . . , n the inequality
xi(t)

∑n
j=1 ai,j(t)(fj(xj(t) + x∗j )− fj(x∗j ) ≤ ξ(t)x2

i (t) holds.
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Assumption A6. There exists a function η ∈ C(R+, (0,∞)) such that
ci(t) ≥ η(t), i = 1, 2, . . . , n, t ≥ 0.

Theorem 2. Let assumptions A1, A5, A6 be satisfied with ξ(t) ≤ η(t), t ≥
0.

Then the equilibrium point x∗ of Caputo FONN (9) is asymptotically
stable.

P r o o f: Consider the quadratic functions V (t, x) = xTx . Let x(t) be a
solution of the FONN (14). Then applying Lemma 1 we get for the Caputo
fractional derivative

C
0 D

q
tV (t, x(t)) ≤ −2

n∑
i=1

ci(t)x
2
i (t) + 2

n∑
i=1

n∑
j=1

ai,j(t)xi(t)Fj(xj(t))

= −2

n∑
i=1

(
ci(t)x

2
i (t)− xi(t)

n∑
j=1

ai,j(t)Fj(xj(t))
)

≤ −2
(
η(t)− ξ(t)

) n∑
i=1

x2
i (t).

(16)

From inequality (16) and Lemma 2 the claim follows.
�

EXAMPLE 5. Let n = 1 and consider the scalar nonlinear FONN

C
0 D

q
tx(t) = −cx(t) + a(t)f(x(t)) + I for t > 0, (17)

where q ∈ (0, 1), I = 0.5c, c > 0, a(t) ∈ C([0,∞), (∞, 0]) and the activa-
tion function f(t) is the Probit function or the Logit function (see Example
2). Then the equation (17) has an equilibrium point x∗ = 0.5 (see Exam-
ple 2). Both activation functions are not Lipschitz and Theorem 1 cannot
be applied. Then using xf(x(t) + 0.5) ≥ 0 condition A5 is reduced to
a(t)x(t)f(x(t) + 0.5) ≤ 0 for any solution of FONN (17), and therefore as-
sumption A5 is satisfied with ξ(t) ≡ 0 < c. Then according to Theorem 2
the equilibrium point x∗ = 0.5 of FONN (17) is asymptotically stable for all
c > 0.

�

3.3.3. Non-Lipschitz activation functions and time-depended
Lyapunov functions.

In the case the function η(t) in Assumption A6 is not enough large so
we introduce
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Assumption A7. There exists a continuous positive function g(t) ∈
C([0,∞),R+) such that 0 < α ≤ g(t) ≤ β and the fractional derivative
RL
0 Dq

t g(t) exists for t > 0.
In this case Assumption A5 could be weakened to
Assumption A8. There exists a function ξ ∈ C(R+,R) such that for

any point x ∈ Rn, x = (x1, x2, . . . , xn), and i = 1, 2, . . . , n the inequality
xi
∑n

j=1 ai,j(t)(fj(xj + x∗j )− fj(x∗j ) ≤ ξ(t)x2
i holds.

Theorem 3. Let the assumptions A1, A6, A7, A8 be satisfied and there
exists a constant K > 0 such that

−g(t)η(t) + g(t)ξ(t) + 0.5 RL
0 Dq

t g(t) ≤ −K. (18)

Then the equilibrium point x∗ of Caputo FONN (9) is asymptotically
stable.

P r o o f: In this case the quadratic function V (t, x) =
∑n

j=1 x
2
i , x =

(x1, x2, . . . , xn) does not work.
Consider the function V (t, x) = g(t)

∑n
i=1 x

2
i , x = (x1, x2, . . . , xn) where

the function g(t) is defined in Assumption A7. Then according to As-
sumption A7 condition (i) of Lemma 3 is satisfied with α1(u) = αu and
α2(u) = βu. Also, we get the following inequality for the fractional Dini
derivative

D+
(14)V (t, x) = −2

n∑
i=1

g(t)ci(t)x
2
i + 2

n∑
i=1

g(t)xi·

·
n∑
j=1

ai,j(t)Fj(xj) + RL
0 Dq

t g(t)
n∑
i=1

x2
i

≤
(
− 2g(t)η(t) + 2g(t)ξ(t) + RL

0 Dq
t g(t)

) n∑
j=1

x2
j

≤ −2K

n∑
j=1

x2
j .

(19)

According to Remark 3 and inequality (19) we get the inequality

c
(14)D

q
+V (t, x; 0, x0) = D+

(14)V (t, x)− V (0, x0)

tqΓ(1− q)
≤ −2K

n∑
j=1

x2
j ,

i.e. condition (ii) of Lemma 3 is satisfied. Applying Lemma 3 we prove the
claim.
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Figure 5. Example 6. Graph of the

functions |f(x)| = | tanh(x)| and |x|.
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Figure 6. Example 6. Graph of the

functions a(t) and c(t) for q = 0.3.

�
EXAMPLE 6. Let n = 1 and consider the scalar linear FONN (11) with
c(t) = 0.55

tqΓ(1−q)(Eq(−tq)+0.1) + 0.005
Eq(−tq)+0.1 , I(t) = −c(t), a(t) ∈ C(R+,R+) :

a(t) =
0.25Eq(−tq)
Eq(−tq)+0.1 , the activation function is the Continuous Tan-Sigmoid

Function f(u) = tanh(u) = eu−e−u

eu+e−u and the equilibrium point x∗ = 0.

Theorem 1 is not applicable since the coefficient before x is not a con-
stant.

Let x(t) be a solution of FONN (11). Then using the inequality |f(x)| ≤
|x|, x ∈ R (see Figure 5) we get x(t)a(t)(f(x(t)) − f(0)) ≤ a(t)x2(t), i.e.
Assumption A5 is satisfied with ξ ≡ a(t). However the inequality ξ(t) =

a(t) =
0.45Eq(−tq)
Eq(−tq)+0.1 ≤ η(t) = c(t) = 0.55

tqΓ(1−q)(Eq(−tq)+0.1) + 0.005
Eq(−tq)+0.1 is not

satisfied (see Figure 6 for q = 0.3). Therefore, Theorem 2 cannot be applied.

Consider the function g(t) = (Eq(−tq)+0.1). Then we get the inequality

− g(t)η(t) + g(t)ξ(t) + 0.5 RL
0 Dq

t g(t)

= −(Eq(−tq) + 0.1)
( 0.55

tqΓ(1− q)(Eq(−tq) + 0.1)
+

0.005

Eq(−tq) + 0.1

)
+ (Eq(−tq) + 0.1)

0.45Eq(−tq)
Eq(−tq) + 0.1

+ 0.5 RL
0 Dq

t

(
Eq(−tq) + 0.1

)
= − 0.55

tqΓ(1− q)
− 0.005 + 0.45Eq(−tq) + 0.5

(
− Eq(−tq) +

1.1

tqΓ(1− q)

)
= − 0.55

tqΓ(1− q)
− 0.005 + 0.45Eq(−tq)− 0.5Eq(−tq) +

0.55

tqΓ(1− q)

= −0.005− 0.05Eq(−tq) = −0.05
(
Eq(−tq) + 0.1

)
.

(20)
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According to Theorem 3 the equilibrium point x∗ = 0 of Caputo FONN
(11) is asymptotically stable.

Therefore, in the case of variable coefficients ci and non-Lipschitz activa-
tion function in the FONN the Lyapunov function depending directly on the
time variable and its Caputo fractional Dini derivative could be successfully
applied to study the stability.

�

Conclusions

In this paper, stability of neural networks with time-varying functions of
connections and Caputo fractional derivative is studied. In controlling non-
linear systems, the Lyapunov second method provides a way to analyze
the stability of the system without solving differential equations. Usually
quadratic Lyapunov functions are used and it leads to a restriction to Lips-
chitz activation functions. In this paper we extend the fractional Lyapunov
method to investigate stability behaviour of equilibrium points of neural
networks. In particular with non-Lipschitz activations functions we apply
Lyapunov functions depending directly on time. We show in the case of
variable coefficients and non-Lipschitz activation functions in FONN that
Lyapunov functions depending directly on the time variable and its Caputo
fractional Dini derivative could be successfully applied to study stability.
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