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Abstract

Time fractional Oseen problem is analytically solved for viscous
fluids. Exact solutions are obtained for the dimensionless velocity field
and the corresponding non-trivial shear stress and circulation. These
solutions, as it was to be expected, reduce to the non-dimensional forms
of classical solutions when the fractional parameter tends to one. The
decay of potential vortex and the diffusion of vorticity under the influ-
ence of fractional parameter are graphically underlined and discussed.
The power of vortex as well as the diffusion of vorticity are stronger
for fractional in comparison to ordinary fluids. In all cases the vortex
decreases in time and space.
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1 Introduction

Decay of a potential vortex in viscous fluids (Oseen, 1911) has been ele-
gantly solved by Zierep [1] using similarity by transformation of variables.
He found the exact solution

ω(r, t) =
Γ0

2πr

[
1− exp

(
− r2

4νt

)]
, (1)

corresponding to the problem

∂ω(r, t)

∂t
= ν

(
∂

∂r2
+

1

r

∂

∂r
− 1

r2

)
ω(r, t), ω(r, 0) =

Γ0

2πr
; r, t > 0, (2)

where ω(r, t) is the rotational component of velocity and ν is the kinematic
viscosity of the fluid. The initial distribution of velocity, as it results from
Eq. (2)2, is that of a potential vortex of circulation Γo. Since the flow do-
main is unbounded, the natural conditions

ω(r, t),
∂ω(r, t)

∂r
→ 0 as r →∞ and t > 0, (3)

have been also used. They implies that the fluid is quiescent at infinity and
there is no shear in the free streams [2,3]. The circulation Γ(r, t) on a circle
of radius r, which is of further interest, is given by

Γ(r, t) = 2πrω(r, t) = Γ0

[
1− exp

(
− r2

4νt

)]
. (4)

The results of Zierep [1] have been also extended to non-Newtonian flu-
ids [4-6]. In [4] and [5], for instance, the temperature distribution and the
nontrivial shear stress corresponding to second grade, respectively Maxwell
fluids have been analytically determined. The non-trivial shear stress cor-
responding to this problem, as it results from [5, Eq. (4.5)], is given by

τ(r, t) = µ

{
∂ω(r, t)

∂r
− 1

r
ω(r, t)

}
=
µΓ0

πr2

{(
1 +

r2

4νt

)
exp

(
− r2

4νt

)
− 1

}
,

(5)
where µ is the fluid viscosity. Consequently, rω(r, t) and r2τ(r, t) like the
circulation Γ(r, t) depend of r and t only by means of the similarity variable
r√
2νt

. However, none of the previous works took into consideration the

fractional calculus.
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The purpose of this note is to extend the Oseen problem for viscous flu-
ids to a time fractional model. More exactly, we want to use the advantages
of one of the most modern and recent definitions of the non-integer order
derivative in order to provide exact solutions for the time fractional Oseen
problem. As a motivation, we remember the fact that the fractional models
are more flexible in describing the complex behaviour of many materials and
the first authors who applied fractional derivatives in elasticity or viscoelas-
ticity are Germant [7], respectively Bagley and Torvik [8]. On the other
hand, the memory formulism, which is connected to viscoelastic fluids, can
be brought to light using fractional derivatives [9]. Furthermore, Makris et
al. [10] used experimental data to calibrate a fractional derivative Maxwell
model. More exactly, they determined the value of the fractional parameter
so that the predicted material properties to be in excellent agreement with
the experimental results. Interesting observations regarding the importance
and the multiple applications of fractional derivatives can be found in the
recent paper of Sheoran and Kundu [11].

2 Statement of the Problem

In order to develop solutions free of the geometry of flow, we use the next
non-dimensional variables and functions:

t∗ =
t

t0
, r∗ =

r√
Γ0t0

, ω∗ = 2π

√
t0
Γ0
ω, Γ∗ =

Γ

Γ0
, ν∗ =

ν

Γ0
, τ∗ =

t0
µ
τ, (6)

where t0 is a reference time. Substituting Eqs. (6) in Eqs. (2) and dropping
out the star notation, we find that

∂ω(r, t)

∂t
= ν

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
ω(r, t), ω(r, 0) =

1

r
; r, t > 0. (7)

The natural conditions (3) maintain the same form while the dimensionless
circulation and the shear stress are given by

Γ(r, t) = rω(r, t), τ(r, t) =
1

2π

{
∂ω(r, t)

∂r
− 1

r
ω(r, t)

}
. (8)

The corresponding fractional model is based on the non-integer order par-
tial differential equation

CFDα
t ω(r, t) = ν

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
ω(r, t); r, t > 0, (9)
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with the conditions (3) and (7)2. Here the Caputo-Fabrizio time fractional
derivative [12]

CFDα
t ω(r, t) =

1

1− α

∫ t

0

∂ω(r, s)

∂s
exp

[
−α(t− s)

1− α

]
ds; 0 < α < 1, (10)

satisfies the following useful properties:

lim
α→1

[CFDα
t ω(r, t)] =

∂ω(r, t)

∂t
, L
{
CFDα

t ω(r, t)
}

=
qω(r, q)− ω(r, 0)

(1− α)q + α
, (11)

where ω(r, q) = L[ω(r, t)] is the Laplace transform of ω(r, t) and q is the
transform parameter.

3 Solution of the Problem

In order to solve the fractional order partial differential equation (9) with
the conditions (3) and (7)2, we shall use the Laplace and Hankel transforms.
Consequently, applying the Laplace transform to Eq. (9) and using the
property (11)2, we find that

βq

q + αβ
ω(r, q)− β

q + αβ

1

r
= ν

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
ω(r, q); r > 0, (12)

where β = 1/(1−α). Now, multiplying Eq. (12) by rJ1(ρr), integrating with
respect to r from 0 to infinity and bearing in mind the usual hypotheses:

lim
r→0

rω(r, q) = 0, lim
r→∞

rω(r, q) <∞; r
∂ω(r, q)

∂r
|r=0 <∞, r

∂ω(r, q)

∂r
|r→∞ <∞,

(13)
and the relations (A1)-(A3) from Appendix, it results that

βq

q + αβ
ωH(ρ, q)− β

q + αβ

1

ρ
= −νρ2ωH(ρ, q), (14)

where the Hankel transform ωH(ρ, q) of ω(r, q) is defined by Eq. (A3)2.

The solution of Eq. (14) can be written in the form

ωH(ρ, q) =
β

ρ(β + νρ2)
.

1

q + αβνρ2

β+νρ2

(15)



Fractional Oseen Problem 169

and its inverse Laplace transform is

ωH(ρ, t) =
β

ρ(β + νρ2)
exp

(
− αβνρ2

β + νρ2
t

)
. (16)

Applying the inverse Hankel transform to this last equality, we find the
dimensionless velocity field under the form

ω(r, t) =
β

ν

∫ ∞
0

J1(ρr)

ρ2 + β
ν

exp

(
− αβρ2

ρ2 + β
ν

t

)
dρ. (17)

The value of the non-dimensional circulation Γ(r, t) on a circle of radius
r, as it results from Eqs. (8)1 and (17), is

Γ(r, t) =
βr

ν

∫ ∞
0

J1(ρr)

ρ2 + β
ν

exp

(
− αβρ2

ρ2 + β
ν

t

)
dρ. (18)

Introducing Eq. (17) in (8)2 we find the corresponding non-trivial shear
stress τ(r, t) under the form

τ(r, t) = − 1

2π

β

ν

∫ ∞
0

ρJ2(ρr)

ρ2 + β
ν

exp

(
− αβρ2

ρ2 + β
ν

t

)
dρ. (19)

Finally, it is worth pointing out the fact that making the fractional pa-
rameter α→ 1 into Eqs. (17) and (18) and using Eq. (A4) from Appendix,
we find the simple expressions

ω(r, t) =
1

r

[
1− exp

(
− r2

4νt

)]
, Γ(r, t) = 1− exp

(
− r2

4νt

)
, (20)

which are just the dimensionless forms of the classical solutions (1) and (4).

Moreover, taking the limit of Eq. (19) when α→ 1, we find that

τ(r, t) = − 1

2π

∫ ∞
0

ρJ2(ρr)e
−νρ2tdρ. (21)

Now, based on the equality (A5) from appendix [13, Eq. 6.631], we can
write the shear stress in the simpler form

τ(r, t) = − 1

2π

( r

4νt

)2
F

(
2, 3;− r2

4νt

)
, (22)
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where the degenerate confluent hypergeometric function F (a, b; z) is defined
by

F (a, b; z) = 1 +
a

b.1!
z +

a(a+ 1)

b(b+ 1)2!
z2 +

a(a+ 1)(a+ 2)

b(b+ 1)(b+ 2)3!
z3 + ... (23)

Introducing Eq. (A6) in (22), the shear stress τ(r, t) takes the simple
form

τ(r, t) =
1

πr2

{(
1 +

r2

4νt

)
exp

(
− r2

4νt

)
− 1

}
, (24)

which is the dimensionless form of Eq. (4.5) from [5].
Unfortunately, making t = 0 in Eq. (17) and using Eqs. (A3) and (A7)

from Appendix, we find that

ω(r, 0) =
1

r
−
√
β

ν
K1

(
r

√
β

ν

)
; r > 0, (25)

where K1(·) is the modified Bessel function of second kind and order one.
Consequently, the initial condition (7)2 is not satisfied and our solution
seems to be wrong. In order to remove this mistrust we shall follow another
way to show that the equality (25) is correctly determined.

For this, let us write Eq. (12) in an equivalent form

r2ω′′ + rω′ − (1 + a(q)r2)ω = b(q)r, (26)

where a(q) = β
ν

q
q+αβ , b(q) = −β

ν
r

q+αβ and the notation ” ′ ” is used for
the partial derivative of ω(r, t) with respect to r. A particular solution of
nonhomogenous Bessel equation (26) is 1

rq and its general solution has the
form

ω(r, q) =
1

rq
+ C1I1(r

√
a(q)) + C2K1(r

√
a(q)), (27)

where I1(·) is the modified Bessel function of the first kind and order one.
According to the condition (3)1, the constant C1 has to be zero.

Bearing in mind the equality (13)1 and the fact that

Kn(z) ≈ (n− 1)!

2
(
z

2
)−n for z ≤ n and n > 0 (28)

it results that C2 = −
√
a(q)

q and

ω(r, q) =
1

rq
−
√
a(q)

q
K1

(
r
√
a(q)

)
; r > o (29)
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or equivalently

qω(r, q) =
1

r
−
√
a(q)K1

(
r
√
a(q)

)
; r > 0. (30)

Taking the limit of Eq. (30) when q → ∞ and using the property (A8)
from Appendix, we obtain for ω(r, 0) the same expression as that from Eq.
(25). Consequently, the result is correct and it is not singular in the litera-
ture. Puri [14] studied the first problem of Stokes for Rivlin-Ericksen fluids
and found a solution which does not satisfy the initial condition. Later,
Bandelli et al. [3] and Bandelli and Rajagopal [15] showed that the Laplace
transform method does not work for two different problems of second grade
fluids because the obtained solutions do not satisfy the initial conditions.
This is due to an incompatibility between the prescribed data.
A similar problem appears here because ω(r, 0) tends to infinity for r → 0.
However, using the approximative evaluation (28) and the fact that

Kn(z) ≈ π√
2πz

e−z for z � n and n > 0, (31)

we can determine the magnitude of the deviation, namely

ω(r, 0) =
1

r
−
√
β

ν
K1

(
r

√
β

ν

)
≈


0, if r

√
β
ν � 1

1
r −

√
π
2r

(
β
ν

) 1
4
e
−r

√
β
ν , if r

√
β
ν � 1.

(32)

For large values of r
√

β
ν , the deviation from the initial condition is negligible.

It tends to zero for r →∞.
Of course, a new exact solution for our problem can be obtained applying

the inverse Laplace transform to Eq. (30). However, the inversion procedure
is not always undemanding and often requires care and ingenuity. In this
case the Stehfest’s algorithm for numerical inversion of Laplace transforms
[16] can be successfully used to get a numerical solution.

4 Numerical Results and Conclusions

In this note the time fractional Oseen problem is analytically studied us-
ing Laplace and Hankel transforms. Exact expressions for the dimensionless
velocity ω(r, t) as well as for the corresponding circulation Γ(r, t) on a circle
of radius r and the non-trivial shear stress τ(r, t) are established in inte-
gral form in terms of Bessel function J1(·). As it was to be expected, these



172 C. Fetecau, D. Vieru, A. T. Ahmed

expressions tend to the corresponding non-dimensional forms of classical so-
lutions (20) and the solution (4.5) from [5] if the fractional parameter α→ 1.
The velocity field, given by Eq. (17), remains finite for t > 0 and r ≥ 0
but it does not satisfy the initial condition (7)2. Consequently it does not
represent a smooth solution (cf. [3]) although is infinitely derivable in both
variables. However, this is not a surprise, another similar example of ve-
locity discontinuity at time t = 0 arises in the problem of a block mass m
subjected to a blow P [17].

In order to get some physical insight of present results (17) and (18),
the variations of the two entities of physical interest ω(r, t) and Γ(r, t) with
respect to the spatial and temporal variables r or t are presented in Figs. 1
and 2, respectively 3 and 4 for different values of the fractional parameter
α. In all cases, as expected, the diagrams corresponding to the fractional
model tend to superpose over those of classical solutions when the fractional
parameter α tends to one. Fluids velocity, as it results from Fig. 1, increases
up to a maximum value and then smoothly decreases to the asymptotic value
for large value of r. The circulation Γ(r, t), which describes the diffusion of
vorticity, smoothly increases from zero value in r = 0 up to the asymptotic
value 1(one) for r greater than 4(four). Both entities have greater values for
fractional fluids in comparison to ordinary fluids.
Time variations of ω(r, t) and Γ(r, t) are depicted in Figs. 3 and 4 for
different values of r and the fractional parameter α. As form, the diagrams
of the two entities are almost the same. For each r and α they smoothly
decreases from a maximum at t = 0 to the zero value for increasing values
of t. For small values of r (smaller than four), there exist a critical value of
t up to which their magnitudes are higher for ordinary fluids. An opposite
trend appears later and the diagrams corresponding to fractional fluid tend
to superpose over those of ordinary fluid. The vortex, as expected, decreases
in time and space. More exactly, it deaden in time and space.
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Figure 1: Profiles of the velocity ω(r, t) versus r, for ν = 0.3 and different
values of fractional parameter α and time t.
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Figure 2: Profiles of the circulation Γ(r, t) versus r, for ν = 0.3 and different
values of fractional parameter α and time t.
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Figure 3: Profiles of the velocity ω(r, t) versus t, for ν = 0.3 and different
values of fractional parameter α and the spatial coordinate r.
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Figure 4: Profiles of the circulation Γ(r, t) versus t, for ν = 0.3 and different
values of fractional parameter α and the spatial coordinate r.
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Appendix∫ ∞
0

rJ1(ρr)(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2
)ω(r, t)dr = −ρ2ωH(ρ, t). (A1)

Jα(z) ≈
√

2

πz
cos(z − απ

2
− π

4
) for large value of z. (A2)∫ ∞

0
J1(ρr)dr =

1

ρ
; ωH(ρ, q) =

∫ ∞
0

rω(r, q)J1(ρr)dr. (A3)∫ ∞
0

J1(ax)e−b
2x2dx =

1

a
[1− exp(− a2

4b2
)]; a 6= 0. (A4)∫ ∞

0
xµJν(ax)e−bx

2
dx =

aνΓ(ν+µ+1
2 )

2ν+1b
ν+µ+1

2 Γ(ν + 1)
F

(
ν + µ+ 1

2
, ν + 1; −a

2

4b

)
. (A5)

x2F (2, 3;−x) = 2[1− (1 + x)e−x]. (A6)∫ ∞
0

ρν+1Jν(ρr)

(ρ2 + a2)µ+1
dρ =

aν−µrµ

2µΓ(µ+ 1)
Kν−µ(ar). (A7)

ω(r, 0) = lim
q→∞

qω(r, q). (A8)
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