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After introducing some preliminary results, it is shown that there exist
small perturbation parameters that cause the original stochastic sys-
tems to be mean square stable by utilizing the stochastic Lyapunov
differential equation. Moreover, the decay rate of the original SPSSs
via the boundedness of the solution under the expectation operator are
established explicitly.
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1 Introduction

The systems of differential equations with singular perturbations were inten-
sively investigated in the last sixty years starting with the pioneered work
of Tichonov [20]. We recall that a singularly perturbed system of differ-
ential equations contains small parameters as coefficients of the derivatives
of some unknown functions of the system. Usually such small parameters
are neglected, thus we may associated two subsystems of lower dimensions
which are independent of the small parameters, namely the boundary layer
subsystem (fast subsystem) and the reduced subsystem (slow subsystem),
see e.g. [22] for the deterministic framework and [10, 21] for the stochastic
case. Over the past decade, stabilization problems for singularly perturbed
stochastic systems (SPSSs) have been deeply investigated. The sufficient
conditions of stability based on a combination of the idea of the exponential
stability of singularly perturbed stochastic systems have been established
[18]. An application to the analysis of singularly perturbed Markov systems
represented by random evolutions has been considered [16]. The problem of
exponential stability of singularly perturbed systems with parametric white
noise excitations has been studied in [12, 5] for the linear case and [18] for the
nonlinear case. In general, it is important to evaluate the decay rate for the
SPSS besides the stability. It is known that in the deterministic framework,
there exist the reliable contributions in the analysis of the gap between the
decay rate of the fast component and the decay rate of the slow component
of the solutions of the system of exponentially stable singularly perturbed
systems of differential equation. In contrast, such features of SPSSs with
Markovian jumping parameters has not been fully developed.

In recent years, a stabilization problem for a class of singularly perturbed
linear stochastic systems with state multiplicative white noise and Marko-
vian jumping parameters was investigated [9]. It is worth pointing out that
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the Lyapunov type operator is a powerful tool to establish the sufficient
condition that attains an exponential stability in mean square thus avoiding
the difficulty of using the two-time-scale decomposition approach. However,
time varying case is not discussed. Taking into consideration the fact that
the stability analysis in SPSSs with Markovian jumping parameters has be-
come a priority research topic, the investigation of the expectation behavior
of their dynamics, when the perturbations parameters tend to zero, is ex-
tremely attractive.

In this paper, a stability problem for a class of singularly perturbed lin-
ear stochastic systems with state multiplicative white noise and Markovian
jumping parameters is investigated. It should be noted that a set of suffi-
cient condition for the exponential stability in the mean square sense of the
stochastic differential equations with small perturbation parameters has not
been derived exactly in the present time. Namely, there are few results for
SPSSs with Markovian jumping parameters except for [9]. Therefore, this is
one of the vital reasons that motivates us to investigate our current study.

This paper might be viewed as a time varying case of [9]. Because of
the existence of small perturbation and Markovian jumping parameters, a
linear evolution operator is used instead of the two-time scale decomposition
technique. In the present work, it is shown that the same type of behaviour
can be recovered in the stochastic case of the systems of singularly perturbed
stochastic differential equations. Furthermore, the decay rate of SPSSs are
established explicitly under some assumptions for the small perturbation
parameters.

Notations: The notations used in this work are in general the standard
ones. Here we recall only: Cλ the half plane of the form {z ∈ C|Re z < −λ}
and C− = {z ∈ C|Re z < 0}.

2 The problem

We consider the system of stochastic linear differential equations:

dx1(t) = [A11(t, ηt)x1(t) +A12(t, ηt)x2(t)]dt

+

r∑
k=1

[Ak,11(t, ηt)x1(t) +Ak,12(t, ηt)x2(t)]dwk(t) (1a)

εdx2(t) = [A21(t, ηt)x1(t) +A22(t, ηt)x2(t)]dt

+ µ

r∑
k=1

[Ak,21(t, ηt)x1(t) +Ak,22(t, ηt)x2(t)]dwk(t) (1b)



Exponential Stability in Mean Square 143

where t ∈ R+ = [0,∞), xj(t) ∈ Rnj , j = 1, 2, are the state variables
(unknown functions) and ε > 0, µ > 0 are small parameters often unknown.

In (1) {w(t)}t≥0

(
w(t) = (w1(t) . . . wr(t))

T
)

is an r−dimensional stan-
dard Wiener process defined on a given probability space (Ω,F ,P) and
{ηt}t≥0 is a right continuous Markov process defined on the same proba-
bility space taking values in the finite set N = {1, 2, . . . , N} and has the
transition semigroup P (t) = eQt, t ≥ 0, with Q = (qij) ∈ RN×N . The
elements qij of the generator matrix Q satisfy

qil ≥ 0 if i 6= l,
N∑
j=1

qij = 0, for all i, l ∈ N. (2)

Throughout the paper we assume that {w(t)}t≥0, {ηt}t≥0 are independent

stochastic processes and π0(i)
∆
= P(η0 = i) > 0, for all i ∈ N.

π0 = (π0(1) . . . πo(N)) is the initial probability distribution of the Markov
process. We shall write Ajl(t, i) and Ak,jl(t, i) anytime ηt = i ∈ N.

Regarding the coefficients of the system (1) we make the assumption:

H1) t −→ Ajl(t, i) : R+ → Rnj×nl , t −→ Ak,jl(t, i) : R+ → Rnj×nl

are bounded matrix valued functions that are globally Lipschitz con-
tinuous.

We set

A(t, i, ε) =

[
A11(t, i) A12(t, i)
1

ε
A21(t, i)

1

ε
A22(t, i)

]

Ak(t, i, ε, µ) =

[
Ak,11(t, i) Ak,12(t, i)
µ

ε
Ak,21(t, i)

µ

ε
Ak,22(t, i)

]
. (3)

With these notations the system (1) can be written in a compact form, as:

dx(t) = A(t, ηt, ε)x(t)dt+
r∑

k=1

Ak(t, ηt, ε, µ)x(t)dwk(t) (4)

where x(t) =
(
xT1 (t) xT2 (t)

)T
. Since for each fixed ε > 0, µ > 0, the system

(4) is a stochastic differential equation (SDE) of type (1.22) from [7], then
we may deduce from the developments from Section 1.12 from the afore-

mentioned reference, that for each t0 ∈ R+ and x0 =
(
xT10 xT20

)T ∈ Rn1+n2 ,
the system (1) has a unique solution

x(t; t0, x0, ε, µ) =
(
xT1 (t; t0, x0, ε, µ) xT2 (t; t0, x0, ε, µ)

)T
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starting from x0 at the initial time t0. According to the terminology used
in the case of the deterministic singularly perturbed systems of differential
equations x1(t; t0, x0, ε, µ) will be named slow component, while
x2(t; t0, x0, ε, µ) will be called fast component of the solution x(t; t0, x0, ε, µ).

In this work we deal with the problem of exponential stability of the zero
solution of a system of SDEs of type (1).

Definition 1. We say that the zero solution of SDE (1) or, equivalently
the SDE (1) is exponentially stable in mean square (ESMS), if its solutions(
xT1 (t; t0, x0, ε, µ) xT2 (t; t0, x0, ε, µ)

)T
satisfy

E[|x1(t; t0, x0, ε, µ)|2 + |x2(t; t0, x0, ε, µ)|2 |ηt0 = i] ≤ βe−α(t−t0)|x0|2 (5)

for all t ≥ t0 ≥ 0, x0 ∈ Rn1+n2 , i ∈ N, and arbitrary initial probability
distribution π0 of the Markov process, where α > 0, β ≥ 1 are constants not
depending upon t, t0, x0, π0.

In this work E[·|ηt0 = i] stands for the conditional expectation with
respect to the event {ηt0 = i}.

Our goal is to provide a set of sufficient conditions not depending upon
the small parameters ε > 0, µ > 0 (often unknown) that guarantee the
exponential stability in the mean square sense of the SDEs of type (1) for
sufficient small values of the two parameters ε, and µ.

Since the coefficients of SDE (1) depend upon ε and µ it is expected
that the decay rate α from (5) to be dependent upon these parameters. It
is known that in the deterministic framework (see for example [14], [3], [4],
[15]) there exists a deviation of order ε−1 between the decay rate of the fast
component and the decay rate of the slow component of the solutions of the
system of exponentially stable singularly perturbed differential equations.

In the present work, we shall show that the same type of behaviour can
be recovered in the stochastic case of the systems of singularly perturbed
SDEs of type (1). We shall see that in this case beside the parameters ε, µ
an important role is played by the new parameter ν = µ2/ε. In the special
case N = {1} (no Markovian switching) the result proved here recovers a
part from the result of [5]. The results derived in this work extend to the
time varying case the results from [9].

3 Some auxiliary results

In this section we shall include several results from the deterministic frame-
work which will be used in the derivation of the main results of the present
work.
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Lemma 1. Let (X , ‖ · ‖) be a finite dimensional Banach space and B(X ) be
the space of the linear operators defined on X . Let L : R+ −→ B(X ) be a
operator valued function with the properties:

(a) t −→ L(t) is a bounded and globally Lipschitz continuous function;

(b) for each t ∈ R+ the eigenvalues of the operator L(t) are located in the
half plane Cα where α > 0 does not depend upon t.

Let T(t, t0, ε) be the linear evolution operator on X defined by the linear
differential equation εẋ(t) = L(t)x(t). Under these conditions for each α̃ ∈
(0, α) there exists ε0 = ε0(α̃, ‖L‖∞) > 0 such that

‖T(t, t0, ε)‖ ≤ β̃e
−α̃(t−t0)

ε , ∀ t ≥ t0 ≥ 0, ε ∈ (0, ε̃],

where β̃ ≥ 1 is a constant depending upon α̃, ‖L‖∞, as well as the Lipschitz
constant of L(·).

The proof may be done following standard arguments in singular per-
turbation theory. For details, we refer to [3] and [11].

Now, we consider (Xk, ‖ · ‖k), k = 1, 2 two finite dimensional Banach
spaces. On X = X1 ×X2 we consider the system of linear differential equa-
tions:

ẋ1(t) = M11(t, ε, δ)x1(t) +M12(t, ε, δ)x2(t)

εẋ2(t) = M21(t, ε, δ)x1(t) +M22(t, ε, δ)x2(t) (6)

where (t, ε, δ) −→ Mjk(t, ε, δ) : R+ × [0, 1) × Bρ(δ0) −→ B(Xk,Xj) are op-
erator valued functions j, k = 1, 2, Bρ(δ0) ⊂ Rd is the ball of radius ρ > 0
centered in δ0 ∈ Rd.

Proposition 1. Assume:

(a) the operator valued functions Mjk(·, ·, ·) are bounded on their domain
of definition and have the additional properties

‖Mjk(t1, ε, δ)−Mjk(t2, ε, δ)‖ ≤ γ|t1 − t2|, (7)

for all t1, t2 ∈ R+, (ε, δ) ∈ [0, 1)× Bρ(δ0), γ > 0 being a constant,

‖Mjk(t, ε, δ)−Mjk(t, 0, δ0)‖ ≤ γ̂(ε+ |δ − δ0|) (8)

for all (t, ε, δ) ∈ R+× [0, 1)×Bρ(δ0), γ̂ > 0 being a constant and | · | is
the Euclidian norm on Rd, while ‖ ·‖ from (7) and (8) are the operator
norms induced by ‖ · ‖1 and ‖ · ‖2;
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(b) for each t ∈ R+, the eigenvalues of the linear operator M22(t, 0, δ0) are
located in the half plane C2αf where αf > 0 does not depend upon t;

(c) the linear evolution operator Ts(t, t0) defined by the linear differential
equation on X1 :

ẋ1(t) = Ms(t)x1(t)

satisfies
‖Ts(t, t0)‖ ≤ βse−2αs(t−t0) (9)

for all t ≥ t0 ≥ 0, βs ≥ 1, αs > 0 do not depend by t and t0 and

Ms(t) = M11(t, 0, δ0)−M12(t, 0, δ0)M−1
22 (t, 0, δ0)M21(t, 0, δ0).

Under these conditions there exist ε∗ ∈ (0, 1], ρ∗ ∈ (0, ρ] such that the system
(6) is exponentially stable for any (ε, δ) ∈ (0, ε∗] × Bρ∗(δ0). Moreover, the
solutions of system (6) have the upper bounds of the form

‖x1(t, ε, δ)‖1 ≤ β1e
−αs(t−t0) (‖x1(t0, ε, δ)‖1 + ε‖x2(t0, ε, δ)‖2) (10a)

‖x2(t, ε, δ)‖2 ≤ β2

[
e−

αf (t−t0)
ε ‖x2(t0, ε, δ)‖2 + e−αs(t−t0)(‖x1(t0, ε, δ)‖1

+ ε‖x2(t0, ε, δ)‖2)
]

(10b)

for all t ≥ t0 ≥ 0, βk ≥ 1, k = 1, 2, being constants independent of t, t0, ε, δ.

Proof. Let T(t, t0; ε, δ) and T(t, t0; ε) be the linear evolution operators on
X2 defined by the linear differential equations

εẋ2(t) = M22(t, ε, δ)x2(t)

and
εẋ2(t) = M22(t, 0, δ0)x2(t),

respectively. Applying Lemma 1 for α̃ = 3
2αf we deduce that there exists

ε1 > 0 such that

‖T(t, t0; ε)‖ ≤ ξ1e
−

3αf (t−t0)
2ε

for all t ≥ t0 ≥ 0, 0 < ε ≤ ε1. Further we write

T(t, t0; ε, δ)x = T(t, t0; ε)x (11)

+
1

ε

t∫
t0

T(t, τ ; ε) (M22(τ, ε, δ)−M22(τ, 0, δ0)) T(τ, t0; ε, δ)xdτ
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Employing (8) and (11) we get

‖T(t, t0; ε, δ)x‖2 ≤ ξ1‖x‖2e−
3αf (t−t0)

2ε +
1

ε
ξ1γ̂ (ε+ |δ − δ0|)

×
t∫

t0

e−
3αf (t−τ)

2ε ‖T(τ, t0; ε, δ)x‖2dτ.

Setting ψ(t, ε, δ) = sup
t0≤τ≤t

‖T(τ, t0; ε, δ)x‖2 we obtain

[1− γ1(ε+ |δ − δ0|)]ψ(t, ε, δ) ≤ ξ1‖x‖2e−
3αf (t−t0)

2ε

for all t ≥ t0 ≥ 0, x ∈ X2 where γ1 = 2γ̂ξ1
1

3αf
. Choose c ∈ (0, 1) fixed. If

ε+ |δ − δ0| ≤ 1−c
ξ1

we may conclude that

‖T(t, t0; ε, δ)x‖2 ≤ ξ1
1

c
e−

3αf (t−t0)
2ε ‖x‖2 (12)

for all t ≥ t0 ≥ 0, x ∈ X2.

Further, the assumption (b) together with (8) allow us to deduce that
there exist ε̃1 > 0, ρ̃1 > 0 such that M22(t, ε, δ) is invertible and, additionally
(t, ε, δ) −→M−1

22 (t, ε, δ) is bounded for t ∈ R+, 0 ≤ ε ≤ ε̃1 and |δ− δ0| ≤ ρ̃1.
We set

Ms(t, ε, δ)
∆
= M11(t, ε, δ)−M12(t, ε, δ)M−1

22 (t, ε, δ)M21(t, ε, δ).

One shows that

‖Ms(t, ε, δ)−Ms(t)‖ ≤ γ̂1(ε+ |δ − δ0|)

for all t ∈ R+ and ε, δ such that ε+ |δ − δ0| is sufficiently small.

Let Ts(t, t0; ε, δ) be the linear evolution operator defined on X1 by the
linear differential equation

ẋ1(t) = Ms(t, ε, δ)x1(t).

Employing (9) and Gronwall’s Lemma one shows that

‖T(t, t0; ε, δ)‖ ≤ β̂se−
3αs(t−t0)

2 (13)
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for all t ≥ t0 ≥ 0, ε > 0, δ ∈ Bρ(δ0) are such that ε+ |δ − δ0| is sufficiently
small. The solution of the system (6) has the representation formulae:

x1(t, ε, δ) = Ts(t, t0; ε, δ)x1(t0, ε, δ) +

t∫
t0

Ts(t, τ ; ε, δ)M12(τ, ε, δ)

×
(
x2(τ, ε, δ) +M−1

22 (τ, ε, δ)M21(τ, ε, δ)x1(τ, ε, δ)
)
dτ, (14a)

x2(t, ε, δ) = T(t, t0; ε, δ)x2(t0, ε, δ)

+
1

ε

t∫
t0

T(t, τ ; ε, δ)M21(τ, ε, δ)x1(τ, ε, δ)dτ. (14b)

Substituting (14b) in (14a) and using standard techniques from singular
perturbation theory, one obtains via (7), (8), (12) and (13) that the slow
component x1(t, ε, δ) of the solution of the system (6) has an asymptotic
behaviour of the form described by the first inequality in (10). Finally, from
(13), (14b) together with the upper bound of ‖x1(τ, ε, δ)‖1 given by the first
inequality in (10) we may obtain that the fast component x2(t, ε, δ) of the
solution of (6) has the asymptotic behaviour of the form described by the
second inequality from (10). Thus the proof is complete.

4 The main result

Let x(t) = (xT1 (t, t0, x0; ε, µ) xT2 (t, t0, x0; ε, µ))T be the solution of the sys-
tem (1) starting from x0 = (xT10 xT20)T ∈ Rn1+n2 at the initial time t0 ≥ 0.
We set X(t, i) = E[x(t)xT (t)χ{ηt=i}], t ≥ t0, i ∈ N, χ{ηt=i} is the indicator
function of the event {ηt = i}. We set n = n1 + n2 and Sn ⊂ Rn×n stands
for the linear space of the symmetric matrices of size n × n. We denote
SNn = Sn × Sn × . . .× Sn. Applying Theorem 3.1.6 from [7] we obtain that
t −→ (X(t, 1), X(t, 2), . . . , X(t,N)) is the solution of the following problem
with given initial values on the space SNn :

Ẋ(t, i) = A(t, i, ε)X(t, i) +X(t, i)AT (t, i, ε)

+
r∑

k=1

Ak(t, i, ε, µ)X(t, i)ATk (t, i, ε, µ)

+

N∑
j=1

qjiX(t, j), i ∈ N (15)
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X(t0, l) = x0x
T
0 πt0(l), l ∈ N, where πt0 = (πt0(1), . . . , πt0(N)) is the pro-

bability distribution of the random variable ηt0 , i.e. πt0(l) = P{ηt0 = l},
l ∈ N. Let [

X11(t, i) X12(t, i)
XT

12(t, i) X22(t, i)

]
be the partition of X(t, i) compatible with the partition of the coefficients of
(15) given in (3). By direct calculation one obtains the following partition
of (15):

Ẋ11(t, i) = A11(t, i)X11(t, i) +A12(t, i)XT
12(t, i) +X11(t, i)AT11(t, i)

+X12(t, i)AT12(t, i) +
r∑

k=1

[Ak,11(t, i)X11(t, i)ATk,11(t, i)

+Ak,12(t, i)XT
12(t, i)ATk,11(t, i) +Ak,11(t, i)X12(t, i)ATk,12(t, i)

+Ak,12(t, i)X22(t, i)ATk,12(t, i)] +

N∑
j=1

qjiX11(t, j), (16a)

εẊ12(t, i) = εA11(t, i)X12(t, i) + εA12(t, i)X22(t, i) +X11(t, i)AT21(t, i)

+X12(t, i)AT22(t, i) + µ

r∑
k=1

t[Ak,11(t, i)X11(t, i)ATk,21(t, i)

+Ak,12(t, i)XT
12(t, i)ATk,21(t, i) +Ak,11(t, i)X12(t, i)ATk,22(t, i)

+Ak,12(t, i)X22(t, i)ATk,22(t, i)] + ε

N∑
j=1

qjiX12(t, j), (16b)

εẊ22(t, i) = A21(t, i)X12(t, i) +A22(t, i)X22(t, i) +XT
12(t, i)AT21(t, i)

+X22(t, i)AT22(t, i) +
µ2

ε

r∑
k=1

[Ak,21(t, i)X11(t, i)ATk,21(t, i)

+Ak,22(t, i)XT
12(t, i)ATk,21(t, i) +Ak,21(t, i)X12(t, i)ATk,22(t, i)

+Ak,22(t, i)X22(t, i)ATk,22(t, i)] + ε
N∑
j=1

qjiX22(t, j) (16c)

Xjl(t0, i) = x0jx
T
0lπt0(i), j, l = 1, 2, i ∈ N. (16d)

Further on, we shall show that the system of linear differential equations
(16) can be regarded as a system of singularly perturbed linear differential
equations of the form (6). To this end, we take X1 = SNn1

. The elements
X1 are finite sequences of symmetric matrices of size n1× n1, that is, X1 =
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(X1(1), . . . , X1(N)). On the space X1 we introduce the norm ‖ · ‖1 defined
by

‖X1‖1 = max
i∈N
|X1(i)| (17)

for all X1 ∈ X1, |X1(i)| being the spectral norm of the matrix X1(i).
Also, we set

X2
∆
=
(
Rn1×n1 × Sn2

)
× . . .×

(
Rn1×n2 × Sn2

)︸ ︷︷ ︸
N times

.

Its elements X2 are finite sequences of the form

X2 = ((X12(1), X22(1)), . . . , (X12(N), X22(N))) .

On the space X2 we introduce the norm

‖X2‖2 = max
i∈N
{max (|X12(i)|, |X22(i)|)} . (18)

One can see that (Xj , ‖ · ‖j) , j = 1, 2 are finite dimensional Banach spaces.
The system (16) may be regarded as a system of singularly perturbed linear
differential equations on the space X1 ×X2 :

Ẋ1(t) = M11(t, ε, µ, ν)[X1(t)] + M12(t, ε, µ, ν)[X2(t)] (19a)

εẊ2(t) = M21(t, ε, µ, ν)[X1(t)] + M22(t, ε, µ, ν)[X2(t)] (19b)

where Xl −→Mjl(t, ε, µ, ν)[Xl] : Xl −→ Xj are defined as follows:

M11(t, ε, µ, ν)[X1](i)

∆
= A11(t, i)X11(i) +X11(i)AT11(t, i)

+

r∑
k=1

Ak,11(t, i)X11(i)ATk,11(t, i) +

N∑
j=1

qjiX11(j) (20)

i ∈ N, for all X1 = (X11(1), . . . , X11(N)) ∈ X1.

M12(t, ε, µ, ν)[X2](i)

∆
= A12(t, i)XT

12(i) +X12(i)AT12(t, i)

+

r∑
k=1

[
Ak,12(t, i)XT

12(i)ATk,11(t, i) +Ak,11(t, i)X12(i)ATk,12(t, i)

+Ak,12(t, i)X22(i)ATk,12(t, i)] (21)
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i ∈ N, for all X2 = ((X12(1), X22(1)), . . . , (X12(N), X22(N))) ∈ X2.
Furthermore, we have

M21(t, ε, µ, ν)[X1](i)
∆
=
(
M1

21(t, ε, µ, ν)[X1](i),M2
21(t, ε, µ, ν)[X1](i)

)
, (22)

where

M1
21(t, ε, µ, ν)[X1](i) = X11(i)AT21(t, i)

+ µ

r∑
k=1

Ak,11(t, i)X11(i)ATk,21(t, i), (23a)

M2
21(t, ε, µ, ν)[X1](i) = ν

r∑
k=1

Ak,21(t, i)X11(i)ATk,21(t, i). (23b)

On the other hand, we also have

M22(t, ε, µ, ν)[X2](i)
∆
=
(
M1

22(t, ε, µ, ν)[X2](i),M2
22(t, ε, µ, ν)[X2](i)

)
, (24)

where

M1
22(t, ε, µ, ν)[X2](i) = εA11(t, i)X12(i) + εA12(t, i)X22(i) +X12(i)AT22(t, i)

+ µ
r∑

k=1

[
Ak,12(t, i)XT

12(i)ATk,21(t, i) +Ak,11(t, i)X12(i)ATk,22(t, i)

+Ak,12(t, i)X22(i)ATk,22(t, i)] + ε
N∑
j=1

qjiX12(j), (25a)

M2
22(t, ε, µ, ν)[X2](i) = A21(t, i)X12(i) +A22(t, i)X22(i) +XT

12(i)AT21(t, i)

+X22(i)AT22(t, i) + ν
r∑

k=1

[
Ak,22(t, i)XT

12(t, i)ATk,21(t, i)

+Ak,21(t, i)X12(i)ATk,22(t, i) +Ak,22(t, i)X22(i)ATk,22(t, i)]

+ ε
N∑
j=1

qjiX22(j) (25b)

for all X2 = ((X12(1), X22(1)), . . . , (X12(N), X22(N))) ∈ X2.
Comparing (19)-(24) with (16) we remark the natural occurrence of the

quantity ν = µ2/ε. This quantity must be interpreted as an additional
parameter of the problem under investigation. We note that even if ε −→ 0+,
µ −→ 0+, the limit lim

(ε,µ)→(0+,0+)
µ2/ε does not exist. That is why, in the

following we are making the assumption:
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H2) The values of the small parameters ε > 0, µ > 0 are such that the
values of µ2/ε tend to a nominal value ν0.

Remark 1. The assumption H2) is fulfilled if, for example, µ = ψ(ε),
where ψ : R+ −→ R+ is a function with the properties:

(a) ψ(ε) = 0 if and only if ε = 0;

(b) lim
ε→0+

ψ(ε) = 0;

(c) lim
ε→0+

ψ2(ε)
ε = ν0.

In many works was used ψ(ε) = εθ with θ ≥ 1
2 (see for example [2], [5],

[6], [8], [13], [17], [18] and the references therein).

In applications, the value of the nominal parameter ν0 is established to-
gether with the mathematical model of the phenomena under investigation.

Let us remark that if we take δ = (µ, ν) and δ0 = (0, ν0), the system (19)
is of type (6). Hence, we may apply the result from Proposition 1 to obtain
a set of sufficient conditions that guarantee the exponential stability of the
system (19) for any ε > 0, µ > 0 small enough.

Proposition 2. Assume:

(a) the assumptions H1) and H2) are fulfilled;

(b) for any t ∈ R+, the eigenvalues of the linear operators M22(t, 0, 0, ν0) :
X2 → X2 are located in the half plane C2αf for some αf > 0 not
depending upon t;

(c) the linear evolution operator Ts(t, t0) defined by the linear differential
equation on X1 :

Ẋ1(t) = Ms(t)[X1(t)]

satisfies

‖Ts(t, t0)‖ ≤ βse−2αs(t−t0) (26)

for all t ≥ t0 ≥ 0, βs ≥ 1, αs > 0, not depending upon t, t0, and,
Ms(t) : X1 → X1 being defined by

Ms(t) = M11(t, 0, 0, ν0)−M12(t, 0, 0, ν0)M−1
22 (t, 0, 0, ν0)M21(t, 0, 0, ν0).

(27)
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Under these conditions there exist ε̃ > 0, µ̃ > 0, ρ̃ > 0, such that for any
0 < ε ≤ ε̃, 0 < µ ≤ µ̃ that satisfy |µ2/ε − ν0| ≤ ρ̃, the system (19) is
exponentially stable. Furthermore, for these values of the parameters ε and
µ, the solutions of the system (19) have upper bounds of the form:

‖X1(t, ε, µ)‖1 ≤ c1e
−αs(t−t0) (‖X1(t0, ε, µ)‖1 + ε‖X2(t0, ε, µ)‖2)

‖X2(t, ε, µ)‖2 ≤ c2[e−
αf (t−t0)

ε ‖X2(t0, ε, µ)‖2 + e−αs(t−t0) (‖X1(t0, ε, µ)‖1
+ε‖X2(t0, ε, µ)‖2)] (28)

for all t ≥ t0 ≥ 0.

Proof. First, let us remark that the assumption H1) together with (20)-
(24) guarantee that the assumption (a) from Proposition 1 is fulfilled in
the special case of the system (19). The assumptions (b) and (c) from the
statement of the Proposition 2 are special forms of the assumptions (b) and
(c) from Proposition 1 associated to the system (19) and δ0 = (0, ν0). So,
(28) follows immediately from (10). Thus the proof is complete.

In the sequel, we shall emphasize some conditions expressed in terms of
the coefficients of the system (1) that guarantee that assumptions (b) and
(c) from Proposition 2 are fulfilled. For each (t, i) ∈ R+×N we consider the
generalized Lyapunov operator Lfν0(t, i) : Sn2 → Sn2 defined by

Lfν0(t, i)[Z] = A22(t, i)Z + ZAT22(t, i) + ν0

r∑
k=1

Ak,22(t, i)ZATk,22(t, i) (29)

for all Z ∈ Sn2 . The operator Lfν0(t, i) is the linear operator of Lyapunov
type associated to the stochastic linear differential equation of the form

dx2(τ) = A22(t, i)x2(τ)dτ +
√
ν0

r∑
k=1

Ak,22(t, i)x2(τ)dwk(τ) (30)

where (t, i) ∈ R+ ×N are parameters.
One knows that for each fixed (t, i), the system (30) is exponentially

stable in mean square if and only if the eigenvalues of the operator Lfν0(t, i)
are in the half plane C−.

Now we prove an auxiliary result that will be involved in the proof of
the forthcoming proposition.

Lemma 2. Assume that the assumptions H1) and H2) are fulfilled. Under
these conditions the following hold:
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(i) for each (t, i) ∈ R+×N, the linear operator Lfν0(t, i) defines a positive

evolution on the linear space Sn2 , that is, eLfν0 (t,i)τ [Z] ≥ 0, for all
τ ≥ 0 if Z ≥ 0;

(ii) if the eigenvalues of the linear operators Lfν0(t, i) are placed in the half
plane of the form Cλ, with λ > 0 not depending upon (t, i) ∈ R+ ×N,
then, for any λ̃ ∈ (0, λ) there exists c̃ > 0 not depending upon t, i, τ

such that ‖eLfν0 (t,i)τ‖ ≤ c̃e−λ̃τ , for all τ ≥ 0, ‖ · ‖ being the operator
norm induced by the spectral norm | · | on Sn2.

Proof. The assertion (i) is a straightforward consequence of the Remark
2.6.2 from [7].

To prove (ii) let us remark that

‖eLfν0 (t,i)τ‖ = |eLfν0 (t,i)τ [In2 ]|,

where In2 is the identity matrix of size n2 × n2. To obtain this equality we
have used the Corollary 2.1.7 (i) and Theorem 2.1.10 from [7] in the special
case of the Banach space (Sn2 , | · |). We set Z(τ) = eLfν0 (t,i)τ [In2 ]. So, Z(·)
is the solution of the problem with given initial values:

d

dτ
Z(τ) = Lfν0(t, i)[Z(τ)], Z(0) = In2 . (31)

Using the techniques of H-representation, introduced in [23] we obtain that

Z(τ) = ϕ−1(ξ(τ)) where ϕ : Sn2 → R
n2(n2+1)

2 is the isomorphism introduced
in [23] and ξ(τ) is the solution of the following problem with given initial
values:

d

dτ
ξ(τ) = Θ(t, i)ξ(τ), ξ(0) = ϕ(In2), (32)

where Θ(t, i) is the matrix associated to the linear operator Lfν0(t, i) via
(9) from [23]. Invoking the boundedness of the functions t → A22(t, i) and
t → Ak,22(t, i) we may deduce that there exists γ̌ > 0 not depending upon
(t, i) ∈ R+ ×N such that |Θ(t, i)| ≤ γ̌.

On the other hand, from Lemma 3.1 (ii) from [23] applied in the case of
linear operator defined in (29), we infer that the spectrum of the operator
Lfν0(t, i) coincides to the spectrum of the matrix Θ(t, i).
We consider λ̃ ∈ (0, λ). Applying Proposition 3, Chapter 1 from [1] in the
case of the matrix Θ(t, i) we deduce that there exists c̃1 > 0 not depending
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upon (t, i) so that |eΘ(t,i)τ | ≤ c̃1e
−λ̃τ , for all τ ≥ 0. This allows us to deduce

that the solutions of the problem with given initial values satisfy

|ξ(τ)| ≤ c̃1e
−λ̃τ |ϕ(In2)|.

In this way we may conclude that

‖eLfν0 (t,i)τ‖ = |Z(τ)| = |ϕ−1(ξ(τ))| ≤ c̃e−λ̃τ

where c̃ = ‖ϕ−1‖ · |ϕ(In2)|c̃1. Thus the proof is complete.

The next result provides a condition which guarantee that the assump-
tion (b) from Proposition 2 is fulfilled.

Proposition 3. Assume:

(a) H1) and H2) are fulfilled;

(b) there exists λ > 0 not depending upon (t, i) such that the eigenvalues
of the linear operators Lfν0(t, i) are located in the half plane Cλ for all
(t, i) ∈ R+ ×N.

Under these conditions there exists αf > 0 not depending upon t such that
the eigenvalues of the linear operator M22(t, 0, 0, ν0) are in the half plane
C2α.

Proof. The conclusion one obtains showing that there exist ĉ ≥ 1 and α > 0
not depending upon t ∈ R+ such that

‖eM22(t,0,0,ν0)τ‖ ≤ ĉe−ατ ,

for all τ ≥ 0, t ∈ R+. Here, ‖ · ‖ is the operator norm induced by the norm
‖ · ‖2 on the Banach space X2. Employing (24) and (29) we obtain that the
linear differential equation on X2 :

d

dτ
X2(τ) = M22(t, 0, 0, ν0)X2(τ)

with t as a parameter, has the partition:

d

dτ
X12(τ, i) = X12(τ, i)AT22(t, i)

d

dτ
X22(τ, i) = Lfν0(t, i)[X22(τ, i)] +A21(t, i)X12(τ, i) +XT

12(τ, i)AT21(t, i).
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We deduce that for each (t, i) ∈ R+ ×N we have the representation:

X12(τ, i) = X12(0, i)eA
T
22(t,i)τ , ∀ τ ≥ 0, X12(0, i) ∈ Rn1×n2 (33)

X22(τ, i) = eLfν0 (t,i)τ [X22(0, i)] +

τ∫
0

eLfν0 (t,i)(τ−σ)[A21(t, i)X12(τ, i)

+XT
12(τ, i)AT21(t, i)]dσ (34)

for all τ ≥ 0, X22(0, i) ∈ Sn2 . Based on Lemma 2 we infer that under the
considered assumptions we have:

‖eLfν0 (t,i)τ‖ ≤ c̃e−λ̃τ , (35)

for all τ ≥ 0, where c̃ ≥ 1, λ̃ > 0 not depending upon (t, i) ∈ R+ × N.
Setting ν0 = 0 in (29) we obtain

Lf0(t, i)[Z] = A22(t, i)Z + ZAT22(t, i). (36)

We have Lf0(t, i) ≤ Lfν0(t, i) that yields

0 ≤ eLf0(t,i)τ [Z] ≤ eLfν0 (t,i)τ [Z] if Z ≥ 0.

Applying Corollary 2.1.11 from [7] in the special case of this positive operator
we obtain

‖eLf0(t,i)τ‖ ≤ ‖eLfν0 (t,i)τ‖, (37)

for all τ ≥ 0, (t, i) ∈ R+ ×N. Here and in (35), ‖ · ‖ is the operator norm
induced by the spectral norm | · | on Sn2 . From (35) and (37) we get

‖eLf0(t,i)τ‖ ≤ c̃e−λ̃τ (38)

for all τ ≥ 0, (t, i) ∈ R+×N. On the other hand, employing Theorem 2.1.10
from [7] in the special case of the operator Lf0(t, i) we have

‖eLf0(t,i)τ‖ = |eLf0(t,i)τ [In2 ]|.

According to (36) we obtain that

eLf0(t,i)τ [In2 ] = eA22(t,i)τeA
T
22(t,i)τ .

Hence, (38) becomes

|eA22(t,i)τeA
T
22(t,i)τ | ≤ c̃e−λ̃τ
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that yields

|eAT22(t,i)τ | ≤
√
c̃e−

λ̃
2
τ (39)

for all τ ≥ 0, (t, i) ∈ R+×N. The proof may continue as in the time invariant
case employing (33)-(35) and (39), because the upper bounds from (35) and
(39) are uniform with respect to (t, i) ∈ R+×N. For details see for example
Lemma 1 from [9].

Assuming that A22(t, i) are invertible, we introduce the notations:

As(t, i) = A11(t, i)−A12(t, i)A−1
22 (t, i)A21(t, i) (40)

Akl,s(t, i) = Ak,l1(t, i)−Ak,l2(t, i)A−1
22 (t, i)A21(t, i)

l = 1, 2, 1 ≤ k ≤ r, (t, i) ∈ R+×N. Assuming also that for each (t, i) ∈ R+×
N the linear operator Lfν0(t, i) defined by (29) is invertible, we introduce
the following linear operator Lsν0(t) : SNn1

→ SNn1
defined by

Lsν0(t)[X1] = (Lsν0(t)[X1](1), . . . ,Lsν0(t)[X1](N))

with

Lsν0(t)[X1](i)

= As(t, i)X1(i) +X1(i)ATs (t, i) +
r∑

k=1

Ak1,s(t, i)X1(i)ATk1,s(t, i)

− ν0

r∑
k=1

r∑
l=1

Ak,12(t, i)

× L−1
fν0

(t, i)[Al2,s(t, i)X1(i)ATl2,s(t, i)]A
T
k,12(t, i) +

N∑
j=1

qjiX1(j (41)

for all X1 = (X1(1), . . . , X1(N)) ∈ SNn1
.

The next result provides an explicit formula of the operator Ms(t) defined
in (27).

Lemma 3. If for any (t, i) ∈ R+ ×N, the matrices A22(t, i) and the linear
operator Lfν0(t, i) are invertible, then we have Ms(t) = Lsν0(t), for all t ∈
R+.

The proof is done by direct calculation involving (20)-(24) written for
ε = 0, µ = 0, ν = ν0.

One of the main results of this paper is:
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Theorem 1. Assume:

(a) the assumption H1) and the assumption H2) with ν0 > 0 are fulfilled;

(b) for any (t, i) ∈ R+×N the eigenvalues of the linear operators Lfν0(t, i)
are located into the half plane of the form {z ∈ C|Re z ≤ −2αf} for
an αf > 0 not depending upon (t, i);

(c) the linear evolution operator Ts(t, t0) defined by the linear differential
equation on SNn1

Ẋ1(t) = Lsν0(t)[X1(t)]

has the behaviour of the form

‖Ts(t, t0)‖ ≤ βse−2αs(t−t0)

for all t ≥ t0 ≥ 0, βs ≥ 1, αs > 0, being constants not depending upon
t and t0.

Under these conditions there exist ε∗ > 0, µ∗ > 0, ρ∗ > 0, with the properties
that the full system of SDEs (1) is ESMS for arbitrary 0 < ε ≤ ε∗, 0 < µ ≤
µ∗, such that |µ2/ε− ν0| ≤ ρ∗. Moreover, if[

φ11(t, t0; ε, µ) φ12(t, t0; ε, µ)
φ21(t, t0; ε, µ) φ22(t, t0; ε, µ)

]
is the partition of the fundamental matrix solution φ(t, t0; ε, µ) of the system
(1) compatible with the partition of the coefficients of the system (4) we have

E[|φj1(t, t0; ε, µ)|2|ηt0 = i] ≤ cj1e−α1(t−t0), j = 1, 2,

E[|φ12(t, t0; ε, µ)|2|ηt0 = i] ≤ c12εe
−α1(t−t0), (42)

E[|φ22(t, t0; ε, µ)|2|ηt0 = i] ≤ c22(e−
α2(t−t0)

ε + εe−α1(t−t0))

for all t ≥ t0 ≥ 0, i ∈ N, where cjl ≥ 1, α1 ∈ (0, αs) and α2 ∈ (0, αf ) do not
depend upon t, t0, ε and µ.

Proof. Based on Proposition 3 and Lemma 3 we may remark that, if the as-
sumptions in the statement are fulfilled then the assumptions of the Propo-
sition 2 are also satisfied. Hence, there exists ε∗ > 0, µ∗ > 0, with the
property that if 0 < ε ≤ ε∗, 0 < µ ≤ µ∗ and |µ2/ε − ν0| ≤ ρ∗, then the
solutions of the system (19) or, equivalently, the solutions of the system
(15) satisfy inequalities of the form (28). To simplify the notations, in the
rest of the proof we shall omit the dependence with respect to ε and µ of
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the solutions of equations (15) as well as of the block components of the
fundamental matrix solution φ(t, t0; ε, µ) of the system (1). Let

X(t, t0,H) = (X(t, t0,H, 1), X(t, t0,H, 2), . . . , X(t, t0,H, N))

be the solution of the system (15) satisfying the initial condition X(t0, t0,H) =
H, where H is arbitrary in SNn .

The j-th component of the solution X(t, t0,H) has the representation

X(t, t0,H, j) = T(t, t0)[H](j), 1 ≤ j ≤ N,

T(t, t0) being the linear evolution operator defined by the linear differential
equation (15).

Further, employing the representation formula of a linear evolution op-
erator defined by a Lyapunov type linear differential equation associated to
linear SDEs (see for example formula (3.8) from Remark 3.1.3 in [7]) we
obtain

X(t, t0,H, j) =
N∑
i=1

E[φ(t, t0)H(i)φT (t, t0)χ{ηt=j}|ηt0 = i]. (43)

Let i0 ∈ N be arbitrary but fixed and Hi0 ∈ SNn be defined by Hi0 =
(Hi0(1), . . . ,Hi0(N)) , where

Hi0(i) =

{
0, if i 6= i0

x0x
T
0 , if i = i0,

with x0 = (xT10 xT20)T ∈ Rn1 × Rn2 is arbitrary but fixed. The equalities
(43) written for H replaced by Hi0 yield:

E[φ(t, t0)x0(φ(t, t0)x0)T |ηt0 = i0] =
N∑
j=1

X(t, t0,Hi0 , j). (44)

Let [
X11(t, t0,Hi0 , j) X12(t, t0,Hi0 , j)
XT

12(t, t0,Hi0 , j) X22(t, t0,Hi0 , j)

]
be the partition of the matrix X(t, t0,Hi0 , j) compatible with the partition
of the coefficients of (15) given in (3). We set

Xi0
1 (t) = (X11(t, t0,Hi0 , 1), . . . , X11(t, t0,Hi0 , N))
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and Xi0
2 (t) = [(X12(t, t0,Hi0 , 1), X22(t, t0,Hi0 , 1)), . . . ,

(X12(t, t0,Hi0 , N), X22(t, t0,Hi0 , N))].
Based on the partition given in (16) of the equation (15) satisfied by

X(t, t0,Hi0) we deduce that t→
(
Xi0

1 (t),Xi0
2 (t)

)
is a solution of the system

(19).
On the other hand, (17) and (18) respectively, allow us to obtain that

‖Xi0
1 (t0)‖1 = |x10|2 and ‖Xi0

2 (t0)‖2 = max{|x10x
T
20|, |x20|2}. (45)

Taking x20 = 0 in (44) we obtain

E[φ11(t, t0)x10(φ11(t, t0)x10)T |ηt0 = i0]

=

N∑
j=1

X11(t, t0, Ȟi0 , j) ≤ N‖X̌
i0
1 (t)‖1In1 (46a)

E[φ21(t, t0)x10(φ21(t, t0)x10)T |ηt0 = i0]

=

N∑
j=1

X22(t, t0, Ȟi0 , j) ≤ N‖X̌
i0
2 (t)‖2In2 (46b)

where Ȟi0 is the value of Hi0 in the case of x0 = (xT10 0T )T and (X̌i0
1 (t), X̌i0

2 (t))
stands for (Xi0

1 (t),Xi0
2 (t)) when Hi0 is replaced by Ȟi0 .

On the other hand if x10 = 0, then (44) yields

E[φ12(t, t0)x20(φ12(t, t0)x20)T |ηt0 = i0]

=
N∑
j=1

X11(t, t0, Ĥi0 , j) ≤ N‖X̂
i0
1 (t)‖1In1 (47a)

E[φ22(t, t0)x20(φ22(t, t0)x20)T |ηt0 = i0]

=
N∑
j=1

X22(t, t0, Ĥi0 , j)leqN‖X̂
i0
2 (t)‖2In2 (47b)

where Ĥi0 is the value of Hi0 when x0 = (0T xT20)T and (X̂i0
1 (t), X̂i0

2 (t))
stands for (Xi0

1 (t),Xi0
2 (t)) when Hi0 is replaced by Ĥi0 .

Employing (28), (45), (46) we get

E[|φj1(t, t0)x10|2|ηt0 = i0] ≤ njcjNe−α1(t−t0)|x10|2

for all t ≥ t0 ≥ 0, j = 1, 2. Thus, we obtained the first two inequalities from
(42). The other inequalities from (42) are obtained combining (28) with
(45) and (47). Thus the proof is complete.
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Remark 2. (a) The assumption (b) of Theorem 1 could be reformulated
in terms of uniform exponential stability in mean square with respect
to (t, i) ∈ R+ × N of the system with frozen coefficients (30). The
assumption (c) of the same theorem cannot be expressed in terms of
exponential stability in mean square for a system of SDE, because if
ν0 > 0 the linear operator Lsν0(t) defined in (41) cannot be interpreted
into an obvious way as an Lyapunov type operator associated to a
system of SDEs.

(b) Following the same line of the proof as in the time invariant case
(see for example Proposition 2 from [9]) one may show that the lin-
ear operator Lsν0(t) defines a positive evolution on the space SNn1

, i.e.
Ts(t, t0)[X1] ≥ 0, for all t ≥ t0 if X1 = (X1(1), . . . , X1(N)) is such
that X1(i) ≥ 0, for all i ∈ N. This fact could be exploited to obtain suf-
ficient conditions which guarantee that the assumption (c) of Theorem
1 is fulfilled.

In the sequel we focus our attention on the case when the assumption
H2) is fulfilled with ν0 = 0. In this case, the linear operator introduced in
(41) reduces to

Ls0(t)[X1] = (Ls0(t)[X1](1), . . . ,Ls0(t)[X1](N)) ,

where

Ls0(t)[X1](i) = As(t, i)X1(i) +X1(i)ATs (t, i)

+
r∑

k=1

Ak1,s(t, i)X1(i)ATk1,s(t, i) +
N∑
j=1

qjiX1(j) (48)

for all X1 ∈ SNn1
. As(t, i) and Ak1,s(t, i) being defined in (40). One sees that

the linear operator Ls0(t) may be viewed as the Lyapunov type operator
associated to the following system of SDEs.

dx1(t) = As(t, ηt)x1(t)dt+

r∑
k=1

Ak1,s(t, ηt)x1(t)dwk(t). (49)

The system (49) can be obtained from the system (1) setting formal ε = 0,
µ = 0. This is why, it is named the reduced subsytem, or the slow subsystem
associated to (1).

The second main result of this work is
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Theorem 2. Assume:

(a) the assumption H1) and the assumption H2) with ν0 = 0 are fulfilled.

(b) There exists αf > 0 not depending upon (t, i) such that the eigenvalues
of the matrix A22(t, i) are in the half plane {z ∈ C|Re z ≤ −αf} for
all (t, i) ∈ R+ ×N.

(c) The reduced subsystem (49) associated to (1) is exponentially stable in
mean square.

Under these conditions there exist ˜̃ε > 0, ˜̃µ > 0, ˜̃ρ > 0 with the property
that the full system (1) is ESMS for arbitrary ε ∈ (0, ˜̃ε], µ ∈ (0, ˜̃µ] which
satisfies µ2/ε ∈ (0, ˜̃ρ]. For these values of the small parameters ε > 0, µ > 0,
the block components of the fundamental matrix solution φ(t, t0; ε, µ) of the
system (1) have upper bounds of the type (42).

Proof. (Hint) As in the case of Theorem 1 one shows that the assumptions
from the statement guarantee that the assumptions of Proposition 2 are
fullfilled in the special case of the system (19) when ν0 = 0. The details are
omitted. Here, we only recall that in this special case, the linear operator
(29) reduces to Lf0(t, i) given in (36). One checks that if the eigenvalues of
the matrices A22(t, i) are in the half plane of type {z ∈ C|Re z ≤ −αf} then
the eigenvalues of the linear operator defined in (36) are in the half plane
{z ∈ C|Re z ≤ −2αf}.

5 Conclusion

In this paper, the stability problem for a class of large-scale singularly per-
turbed linear stochastic systems with state-multiplicative white noise and
Markovian jumping parameters has been investigated. Based on the linear
evolution operator, an exponential stability in mean square with the decay
rates for the slow and the fast subsystems has been evaluated by using the
stochastic Lyapunov differential equation. Thus, the present results are the
extension to the time varying case of [9].
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