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Abstract

We consider a class of second-order evolution inclusions and we
prove that the reachable set of a certain second-order variational in-
clusion is a derived cone in the sense of Hestenes to the reachable
set of the initial differential inclusion. This result allows to obtain a
sufficient condition for local controllability along a reference trajectory.
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1 Introduction

The concept of derived cone to an arbitrary subset of a normed space has
been introduced by M.Hestenes in [8] and successfully used to obtain neces-
sary optimality conditions in Control Theory. Afterwards, this concept has
been largely ignored in favor of other concepts of tangents cones, that may
intrinsically be associated to a point of a given set: the cone of interior direc-
tions, the contingent, the quasitangent and, above all, Clarke’s tangent cone
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(e.g., [1]). Mirică ([12,13]) obtained ”an intersection property” of derived
cones that allowed a conceptually simple proof and significant extensions
of the maximum principle in optimal control; moreover, other properties of
derived cones may be used to obtain controllability and other results in the
qualitative theory of control systems.

In this paper we are concerned with the following problem

x′′ ∈ A(t)x+ F (t, x), x(0) ∈ X0, x′(0) ∈ X1, (1.1)

where F : [0, T ]×X → P(X) is a set-valued map, X is a separable Banach
space, X0, X1 ⊂ X and {A(t)}t≥0 is a family of linear closed operators from
X into X that generates an evolution system of operators {U(t, s)}t,s∈[0,T ].

The general framework of evolution operators {A(t)}t≥0 that define prob-
lem (1.1) has been developed by Kozak ([11]) and improved by Henriquez
([9]). In several recent papers ([2-5], [9,10]) existence results and qualitative
properties of solutions for problem (1.1) have been obtained by using fixed
point techniques.

Our aim is to prove that the reachable set of a certain second-order vari-
ational inclusion is a derived cone in the sense of Hestenes to the reachable
set of the problem (1.1). In order to obtain the continuity property in the
definition of a derived cone we shall use a continuous version of Filippov’s
theorem for mild solutions of differential inclusions (1.1) obtained in [7]. As
an application, when X is finite dimensional, we obtain a sufficient condition
for local controllability along a reference trajectory. The results in this pa-
per may be interpreted as an extension of the results in our previous paper
[6] obtained for second-order differential inclusions defined by cosine family
of operators to the more general problem (1.1).

The paper is organized as follows: in Section 2 we present the notations
and the preliminary results to be used in the sequel and in Section 3 we
provide our main results.

2 Preliminaries

Since the reachable set to a control system is, generally, neither a differen-
tiable manifold, nor a convex set, its infinitesimal properties may be charac-
terized only by tangent cones in a generalized sense, extending the classical
concepts of tangent cones in Differential Geometry and Convex Analysis,
respectively.

From the rather large number of ”convex approximations”, ”tents”, ”reg-
ular tangents cones”, etc. in the literature, we choose the concept of derived
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cone introduced by M. Hestenes in [8].

Let (X, ||.||) be a normed space.

Definition 2.1 ([8]). A subset M ⊂ X is said to be a derived set to
E ⊂ X at x ∈ E if for any finite subset {v1, ..., vk} ⊂M , there exist s0 > 0
and a continuous mapping a(.) : [0, s0]

k → E such that a(0) = x and a(.)
is (conically) differentiable at s = 0 with the derivative col[v1, ..., vk] in the
sense that

lim
Rk

+3θ→0

||a(θ)− a(0)−
∑k
i=1 θivi||

||θ||
= 0.

We shall write in this case that the derivative of a(.) at s = 0 is given by

Da(0)θ =
k∑
i=1

θjvj ∀θ = (θ1, ..., θk) ∈ Rk
+ := [0,∞)k.

A subset C ⊂ X is said to be a derived cone of E at x if it is a derived
set and also a convex cone.

For the basic properties of derived sets and cones we refer to M. Hestenes
[8]; we recall that if M is a derived set then M

⋃
{0} as well as the convex

cone generated by M , defined by

cco(M) = {
k∑
i=1

λjvj ; λj ≥ 0, k ∈ N, vj ∈M, j = 1, ..., k}

is also a derived set, hence a derived cone.

The fact that the derived cone is a proper generalization of the classical
concepts in Differential Geometry and Convex Analysis is illustrated by the
following results ([8]): if E ⊂ Rn is a differentiable manifold and TxE is the
tangent space in the sense of Differential Geometry to E at x

TxE = {v ∈ Rn; ∃ c : (−s, s)→ X, of class C1, c(0) = x, c′(0) = v},

then TxE is a derived cone; also, if E ⊂ Rn is a convex subset then the
tangent cone in the sense of Convex Analysis defined by

TCxE = cl{t(y − x); t ≥ 0, y ∈ E}

is also a derived cone. Since any convex subcone of a derived cone is also
a derived cone, such an object may not be uniquely associated to a point
x ∈ E; moreover, simple examples show that even a maximal with respect
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to set-inclusion derived cone may not be uniquely defined: if the set E ⊂ R2

is defined by

E = C1

⋃
C2, C1 = {(x, x);x ≥ 0}, C2 = {(x,−x), x ≤ 0},

then C1 and C2 are both maximal derived cones of E at the point (0, 0) ∈ E.
On the other hand, the up-to-date experience in Nonsmooth Analysis

shows that for some problems, the use of one of the intrinsic tangent cones
may be preferable. From the multitude of the intrinsic tangent cones in
the literature (e.g. [1]), the contingent, the quasitangent (intermediate) and
Clarke’s tangent cones, defined, respectively, by

KxE = {v ∈ X; ∃ sm → 0+, ∃xm → x, xm ∈ E : xm−xsm
→ v},

QxE = {v ∈ X; ∀sm → 0+, ∃xm → x, xm ∈ E : xm−xsm
→ v},

CxE = {v ∈ X; ∀ (xm, sm)→ (x, 0+), xm ∈ E,∃ ym ∈ E : ym−xm
sm

→ v}

seem to be among the most often used in the study of different problems
involving nonsmooth sets and mappings.

An outstanding property of derived cone, obtained by Hestenes ([8],
Theorem 4.7.4) is stated in the next lemma.

Lemma 2.2. Let X = Rn. Then x ∈ int(E) if and only if C = Rn is a
derived cone at x ∈ E to E.

Corresponding to each type of tangent cone, say τxE one may introduce
(e.g. [1]) a set-valued directional derivative of a multifunction G(.) : E ⊂
X → P(X) (in particular of a single-valued mapping) at a point (x, y) ∈
Graph(G) as follows

τyG(x; v) = {w ∈ X; (v, w) ∈ τ(x,y)Graph(G)}, v ∈ τxE.

We recall that a set-valued map, A(.) : X → P(X) is said to be a
convex (respectively, closed convex) process if Graph(A(.)) ⊂ X × X is a
convex (respectively, closed convex) cone. For the basic properties of convex
processes we refer to [1], but we shall use here only the above definition.

Let denote by I the interval [0, T ] and let X be a real separable Banach
space with the norm ||.|| and with the corresponding metric d(., .). Denote
by L(I) the σ-algebra of all Lebesgue measurable subsets of I, by P(X) the
family of all nonempty subsets of X and by B(X) the family of all Borel
subsets of X. Recall that the Pompeiu-Hausdorff distance of the closed
subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗H(A,B), d∗H(B,A)},
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where d∗H(A,B) = sup{d(a,B); a ∈ A} and d(a,B) = infy∈B d(a, y).

Let (Z, d) be a metric space and consider a set valued map T on Z with
nonempty closed values in Z. T is said to be λ-Lipschitz if there exists λ > 0
such that

dH(T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ Z.

As usual, we denote by C(I,X) the Banach space of all continuous functions
x(.) : I → X endowed with the norm ||x(.)||C = supt∈I ||x(t)||, by L1(I,X)
the Banach space of all (Bochner) integrable functions x(.) : I → X endowed
with the norm ||x(.)||1 =

∫
I ||x(t)||dt and by B(X) the Banach space of linear

bounded operators on X.

In what follows {A(t)}t≥0 is a family of linear closed operators from X
into X that genearates an evolution system of operators {U(t, s)}t,s∈I . By
hypothesis the domain of A(t), D(A(t)) is dense in X and is independent of
t.

Definition 2.3. ([9,11]) A family of bounded linear operators U(t, s) :
X → X, (t, s) ∈ ∆ := {(t, s) ∈ I × I; s ≤ t} is called an evolution operator
of the equation

x′′(t) = A(t)x(t) (2.1)

if

i) For any x ∈ X, the map (t, s) → U(t, s)x is continuously differentiable
and

a) U(t, t) = 0, t ∈ I.

b) If t ∈ I, x ∈ X then ∂
∂tU(t, s)x|t=s = x and ∂

∂sU(t, s)x|t=s = −x.

ii) If (t, s) ∈ ∆, then ∂
∂sU(t, s)x ∈ D(A(t)), the map (t, s) → U(t, s)x is of

class C2 and

a) ∂2

∂t2
U(t, s)x ≡ A(t)U(t, s)x.

b) ∂2

∂s2
U(t, s)x ≡ U(t, s)A(t)x.

c) ∂2

∂s∂tU(t, s)x|t=s = 0.

iii) If (t, s) ∈ ∆, then there exist ∂3

∂t2∂s
U(t, s)x, ∂3

∂s2∂t
U(t, s)x and

a) ∂3

∂t2∂s
U(t, s)x ≡ A(t) ∂∂sU(t, s)x and the map (t, s)→ A(t) ∂∂sU(t, s)x is

continuous.

b) ∂3

∂s2∂t
U(t, s)x ≡ ∂

∂tU(t, s)A(s)x.

As an example for equation (2.1) one may consider the problem (e.g.,
[9])

∂2z

∂t2
(t, τ) =

∂2z

∂τ2
(t, τ) + a(t)

∂z

∂t
(t, τ), t ∈ [0, T ], τ ∈ [0, 2π],
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z(t, 0) = z(t, π) = 0,
∂z

∂τ
(t, 0) =

∂z

∂τ
(t, 2π), t ∈ [0, T ],

where a(.) : I → R is a continuous function. This problem is modeled in
the space X = L2(R,C) of 2π-periodic 2-integrable functions from R to

C, A1z = d2z(τ)
dτ2

with domain H2(R,C) the Sobolev space of 2π-periodic
functions whose derivatives belong to L2(R,C). It is well known thatA1 is
the infinitesimal generator of strongly continuous cosine functions C(t) on
X. Moreover, A1 has discrete spectrum; namely the spectrum of A1 consists
of eigenvalues −n2, n ∈ Z with associated eigenvectors zn(τ) = 1√

2π
einτ ,

n ∈ N. The set zn, n ∈ N is an orthonormal basis of X. In particular,
A1z =

∑
n∈Z−n2 < z, zn > zn, z ∈ D(A1). The cosine function is given

by C(t)z =
∑
n∈Z cos(nt) < z, zn > zn with the associated sine function

S(t)z = t < z, z0 > z0 +
∑
n∈Z∗

sin(nt)
n < z, zn > zn.

For t ∈ I define the operator A2(t)z = a(t)dz(τ)dτ with domain D(A2(t)) =
H1(R,C). Set A(t) = A1 +A2(t). It has been proved in [9] that this family
generates an evolution operator as in Definition 2.1.

Definition 2.4. A continuous mapping x(.) ∈ C(I,X) is called a mild
solution of problem (1.1) if there exists a (Bochner) integrable function
f(.) ∈ L1(I,X) such that

f(t) ∈ F (t, x(t)) a.e. (I), (2.2)

x(t) = − ∂

∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0
U(t, s)f(s)ds, t ∈ I. (2.3)

We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) if f(.) verifies
(2.2) and x(.) is defined by (2.3).

Hypothesis 2.5. i) F (., .) : I ×X → P(X) has nonempty closed values
and is L(I)⊗ B(X) measurable.

ii) There exists L(.) ∈ L1(I,R+) such that, for any t ∈ I, F (t, .) is
L(t)-Lipschitz in the sense that

dH(F (t, x1), F (t, x2)) ≤ L(t)||x1 − x2|| ∀x1, x2 ∈ X.

Hypothesis 2.6. Let S be a separable metric space, X0, X1 ⊂ X are
closed sets, a0(.) : S → X0, a1(.) : S → X1 and c(.) : S → (0,∞) are given
continuous mappings.

The continuous mappings g(.) : S → L1(I,X), y(.) : S → C(I,X) are
given such that

(y(s))′′(t) = A(t)y(s)(t) + g(s)(t), y(s)(0) ∈ X0, (y(s))′(0) ∈ X1.
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and there exists a continuous function q(.) : S → L1(I,R+) such that

d(g(s)(t), F (t, y(s)(t))) ≤ q(s)(t) a.e. (I), ∀ s ∈ S.

Theorem 2.7 ([7]). Assume that Hypotheses 2.5 and 2.6 are satisfied.
Then there exist M > 0 and the continuous functions x(.) : S →

L1(I,X), h(.) : S → C(I,X) such that for any s ∈ S (x(s)(.), h(s)(.))
is a trajectory-selection pair of (1.1) satisfying for any (t, s) ∈ I × S

x(s)(0) = a0(s), (x(s))′(0) = a1(s), (2.4)

||x(s)(t)− y(s)(t)|| ≤
M [c(s) + ||a0(s)− y(s)(0)||+ ||a1(s)− (y(s))′(0)||+

∫ t
0 q(s)(u)du].

(2.5)

3 Main results

Our object of study is the reachable set of (1.1) defined by

RF (T,X0, X1) := {x(T ); x(.) is a mild solution of (1.1)}.

We consider a certain variational second-order differential inclusion and we
shall prove that the reachable set of this variational inclusion from derived
cones C0 ⊂ X to X0 and C1 ⊂ X to X1 at time T is a derived cone to the
reachable set RF (T,X0, X1).

Throughout in this section we assume

Hypothesis 3.1. i) Hypothesis 2.5 is satisfied and X0, X1 ⊂ X are
closed sets.

ii) (z(.), f(.)) ∈ C(I,X)×L1(I,X) is a trajectory-selection pair of (1.1)
and a family P (t, .) : X → P(X), t ∈ I of convex processes satisfying the
condition

P (t, u) ⊂ Qf(t)F (t, .)(z(t);u) ∀u ∈ dom(P (t, .)), a.e. t ∈ I (3.1)

is assumed to be given and defines the variational inclusion

v′′ ∈ A(t)v + P (t, v). (3.2)

Remark 3.2. We note that for any set-valued map F (., .), one may find
an infinite number of families of convex process P (t, .), t ∈ I, satisfying con-
dition (3.1); in fact any family of closed convex subcones of the quasitangent
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cones, P (t) ⊂ Q(z(t),f(t))Graph(F (t, .)), defines the family of closed convex
process

P (t, u) = {v ∈ X; (u, v) ∈ P (t)}, u, v ∈ X, t ∈ I
that satisfy condition (3.1). One is tempted, of course, to take as an ”intrin-
sic” family of such closed convex process, for example Clarke’s convex-valued
directional derivatives Cf(t)F (t, .)(z(t); .).

We recall (e.g. [1]) that, since F (t, .) is assumed to be Lipschitz a.e. on
I, the quasitangent directional derivative is given by

Qf(t)F (t, .)((z(t);u)) = {w ∈ X; lim
θ→0+

1

θ
d(f(t) + θw, F (t, z(t) + θu)) = 0}.

(3.3)
We are able now to prove the main result of this paper.

Theorem 3.3. Assume that Hypothesis 3.1 is satisfied, let C0 ⊂ X
be a derived cone to X0 at z(0) and C1 ⊂ X be a derived cone to X1 at
z′(0). Then the reachable set RP (T,C0, C1) of (3.2) is a derived cone to
RF (T,X0, X1) at z(T ).

Proof. In view of Definition 2.1, let {v1, ..., vm} ⊂ RP (T,C0, C1), hence
such that there exist the trajectory-selection pairs (u1(.), g1(.)), ..., (um(.),
gm(.)) of the variational inclusion (3.2) such that

uj(T ) = vj , uj(0) ∈ C0, u′j(0) ∈ C1, j = 1, 2, ...,m (3.4)

Since C0 ⊂ X is a derived cone to X0 at z(0) and C1 ⊂ X is a derived
cone to X1 at z′(0), there exist the continuous mappings a0 : S = [0, θ0]

m →
X0, a1 : S → X1 such that

a0(0) = z(0), Da0(0)s =
∑m
j=1 sjuj(0) ∀ s ∈ Rm

+ ,

a1(0) = z′(0), Da1(0)s =
∑m
j=1 sju

′
j(0) ∀ s ∈ Rm

+ .
(3.5)

Further on, for any s = (s1, ..., sm) ∈ S and t ∈ I we denote

y(s)(t) = z(t) +
∑m
j=1 sjuj(t),

g(s)(t) = f(t) +
∑m
j=1 sjgj(t),

p(s)(t) = d(g(s)(t), F (t, y(s)(t)))

(3.6)

and we prove that y(.), p(.) satisfy the hypothesis of Theorem 2.7.
Using the lipschitzianity of F (t, ., .) we have that for any s ∈ S, the

measurable function p(s)(.) in (3.6) it is also integrable.

p(s)(t) = d(g(s)(t), F (t, y(s)(t))) ≤
∑m
j=1 sj ||gj(t)||+ dH(F (t, z(t)),

F (t, y(s)(t))) ≤
∑m
j=1 sj ||gj(t)||+ L(t)

∑m
j=1 sj ||uj(t)||.
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Moreover, the mapping s → p(s)(.) ∈ L1(I,R+) is continuous (in fact
Lipschitzian) since for any s, s′ ∈ S one may write succesively

||p(s)(.)− p(s′)(.)||1 =
∫ T
0 ||p(s)(t)− p(s′)(t)||dt ≤

∫ T
0 [||g(s)(t)− g(s′)(t)||dt

+dH(F (t, y(s)(t)), F (t, y(s′)(t))))]dt ≤ ||s− s′||(
∑m
j=1

∫ T
0 [||gj(t)||+

+L(t)||uj(t)||]dt)

Let us define S1 := S\{(0, . . . , 0)} and c(.) : S1 → (0,∞), c(s) := ||s||2.
It follows from Theorem 2.7 the existence of a continuous function x(.) :
S1 → C(I,X) such that for any s ∈ S1, x(s)(.) is a mild solution of (1.1)
with the properties (2.4)-(2.5).

For s = 0 we define x(0)(t) = y(0)(t) = z(t) ∀t ∈ I. Obviously, x(.) :
S → C(I,X) is also continuous.

Finally, we define the function a(.) : S → RF (T,X0, X1) by

a(s) = x(s)(T ) ∀s ∈ S.

Obviously, a(.) is continuous on S and satisfies a(0) = z(T ).
To end the proof we need to show that a(.) is differentiable at s0 = 0 ∈ S

and its derivative is given by

Da(0)(s) =
m∑
j=1

sjvj ∀ s ∈ Rm
+

which is equivalent with the fact that

lim
s→0

1

||s||
(||a(s)− a(0)−

m∑
j=1

sjvj ||) = 0. (3.7)

From (2.7) we obtain

1

||s||
||a(s)−a(0)−

m∑
j=1

sjvj || ≤
1

||s||
||x(s)(T )−y(s)(T )|| ≤M ||s||+ M

||s||
||a0(s)−

z(0)−
m∑
j=1

sjuj(0)||+ M

||s||
||a1(s)− z′(0)−

m∑
j=1

sju
′
j(0)||+M

∫ T

0

p(s)(u)

||s||
du

and therefore in view of (3.5), relation (3.7) is implied by the following
property of the mapping p(.) in (3.6)

lim
s→0

p(s)(t)

||s||
= 0 a.e. (I). (3.8)
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In order to prove the last property we note since P (t, .) is a convex
process for any s ∈ S one has

m∑
j=1

sj
||s||

gj(t) ∈ P (t,
m∑
j=1

sj
||s||

uj(t)) ⊂ Qf(t)F (t, .)(z(t);
m∑
j=1

sj
||s||

uj(t)) a.e. (I).

Hence by (3.3) we obtain

lim
h→0+

1

h
d(f(t) + h

m∑
j=1

sj
||s||

gj(t), F (t, z(t) + h
m∑
j=1

sj
||s||

uj(t))) = 0. (3.9)

In order to prove that (3.9) implies (3.8) we consider the compact metric
space Sm−1+ = {σ ∈ Rm

+ ; ||σ|| = 1} and the real function φt(., .) : (0, θ0] ×
Sm−1+ → R+ defined by

φt(h, σ) =
1

h
d(f(t) + h

m∑
j=1

σjgj(t), F (t, z(t) + h
m∑
j=1

σjuj(t))), (3.10)

where σ = (σ1, ..., σm) and which according to (3.9) has the property

lim
θ→0+

φt(θ, σ) = 0 ∀σ ∈ Sm−1+ a.e. (I) (3.11)

Using the fact that φt(θ, .) is Lipschitzian and the fact that Sm−1+ is a
compact metric space, from (3.11) it follows that

lim
θ→0+

max
σ∈Sm−1

+

φt(θ, σ) = 0

which implies the fact that

lim
s→0

φt(||s||,
s

||s||
) = 0 a.e. (I)

and the proof is complete.

An application of Theorem 3.3 concerns local controllability of the second-
order differential inclusion in (1.1) along a reference trajectory, z(.) at time
T , in the sense that

z(T ) ∈ int(RF (T,X0, X1)).

Theorem 3.4. Let X = Rn, z(.), F (., .) and P (., .) satisfy Hypothesis
3.1, let C0 ⊂ X be a derived cone to X0 at z(0) and C1 ⊂ X be a derived
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cone to X1 at z′(0). If the variational second-order differential inclusion in
(3.2) is controllable at T in the sense that RP (T,C0, C1) = Rn, then the
differential inclusion (1.1) is locally controllable along z(.) at time T .

Proof. The proof is a straightforward application of Lemma 2.2 and of
Theorem 3.3.
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