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A THREE-TERM DESCENT CONJUGATE GRADIENT 
ALGORITHM USING THE MINIMIZATION OF  

THE TWO-PARAMETRIC QUADRATIC MODEL  
FOR LARGE-SCALE UNCONSTRAINED OPTIMIZATION 

Neculai ANDREI1 

Abstract. A three-term descent conjugate gradient algorithm is presented. The algori thm 

is obtained by minimizing the two-parameter quadratic model of the objective function in 

which the symmetrical approximation of the Hessian matrix satisfies the general quasi -

Newton equation. Using the general quasi-Newton equation the search direction includes 

a parameter   which is determined by the formal equality between the search direction 

used in the suggested algorithm and the Newton direction. It is proved that the best value 

of this parameter is 1 . The direction satisfies both the descent and the conjugacy 

conditions. The new approximation of the minimum is obtained by the general Wolfe line 

search using by now a standard acceleration technique. Under standard assumptions, 

both for uniformly convex functions and for general nonlinear functions, the global 

convergence of the algorithm is proved. The numerical experiments using a collection of 

800 large-scale unconstrained optimization test problems of different complexity show 

that using these ingredients we get a search direction able to define a very efficient and 

robust three-term conjugate gradient algorithm. Numerical comparison of this algorithm 

versus well known conjugate gradient algorithms ASCALCG, CONMIN, AHYBRIDM, 

CG-DESCENT, THREECG and TTCG as well as the limited memory quasi-Newton 

algorithm LBFGS (m=5) and the truncated Newton TN show that our algorithm is more 

efficient and more robust. 

Keywords: Large scale unconstrained optimization, Two parameters quadratic model, Generalized 

secant equation, Conjugate gradient algorithms, Numerical comparisons  

1. Introduction 

For solving large-scale unconstrained optimization problems 

 
),(min xf

nRx  (1.1) 

where : nf R R  is a continuously differentiable function, supposed to be 

bounded from below, starting from an initial guess 0

nx R , a three-term 
conjugate gradient method we want to develop in this paper, generates the 

sequence  kx  as: 
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 1k k k kx x d   , (1.2) 

where 0k   is obtained by line search, and the directions kd  are computed as: 

 1 1 ,k k k k k kd g a s b y    
 0 0d g 

. (1.3) 

In (1.3), ka  and kb  are known as three-term conjugate gradient parameters or 

coefficients. As usual 1 ,k k ks x x   ( )k kg f x  and .1 kkk ggy    Observe 

that, the search direction 1kd  is computed as a linear combination of ,1 kg
 ks  

and ,ky  in which the coefficient of 1kg is .1  The line search in the conjugate 
gradient algorithms is often based on the general Wolfe conditions [36, 37]: 

 ( ) ( ) ,T

k k k k k k kf x d f x g d     (1.4) 

 1

T T

k k k kg d g d  , (1.5) 

where kd  is a descent direction and 0 1.     However, for some conjugate 
gradient algorithms stronger version of the Wolfe line search conditions, given by 

(1.4) and 

 1

T T

k k k kg d g d   , (1.6) 

are needed to ensure the convergence and to enhance the stability.  

Different three-term conjugate gradient algorithms correspond to different choices 

for the scalar parameters ka  and kb . In this context the papers by Beale [10], 

McGuire and Wolfe [21], Deng and Li [14] and Dai and Yuan [13], Nazareth [26], 

Zhang, Zhou and Li [38, 39], Zhang, Xiao and Wei [40], Al-Bayati and Sharif [1], 
Cheng [11], Narushima, Yabe and Ford [23], Andrei [7, 8, 9] present different 
versions of three-term conjugate gradient algorithms together with their 

properties, global convergence and numerical performances. All these three-term 
conjugate gradient algorithms are obtained by modification of classical conjugate 

gradient algorithms to satisfy the descent and in some cases the conjugacy 
conditions. Generally, these three-term conjugate gradient algorithms are more 
efficient and more robust than classical conjugate gradient algorithms by Hestenes 

and Stiefel [19] or by Fletcher and Reeves [16], Polak-Ribière-Polyak [30, 31], 
Liu and Storey [20] or by Dai and Yuan [13], etc. 

In this paper we suggest another way to get three-term conjugate gradient 

algorithms by minimizing the two-parameters quadratic model of the function .f  

The idea is to consider the quadratic approximation of the function f  in the 

current point and to determine the search direction (1.3) by minimization of this 
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quadratic model subject to the parameters ka  and .kb  It is assumed that the 
symmetrical approximation of the Hessian matrix satisfies the general quasi-
Newton equation which depends by a positive parameter .  The three-term 

conjugate gradient parameters ka  and kb  are determined as solution of an 
algebraic system of two linear equation. Section 2 presents this idea, as well as the 

procedure for determination of the positive parameter .  In order to determine a 
good value for the parameter   the formal equality between the search direction 

(1.3) and the best known direction given by the Newton direction is used. In 
section 3 the corresponding three-term conjugate gradient TTSCAL algorithm is 
presented into the context of acceleration of the iterations. Section 4 is dedicated 

to the global convergence analysis of the algorithm. It is shown that under the 
standard assumptions both for uniformly convex functions and for general 

functions the search direction is bounded. Section 5 includes the numerical results 
with TTSCAL and some comparisons versus known conjugate gradient 
algorithms ASCALCG [2, 3], CONMIN [35], AHYBRIDM [6], CG-DESCENT 

[18], THREECG [9], TTCG [8] as well as versus LBFGS [27] and TN [24], on a 
collection of 800 large-scale unconstrained optimization test functions. It is shown 

that the three-term conjugate gradient algorithm TTSCAL corresponding to the 
minimization of the two-parameters quadratic model of the minimizing function 
f is more efficient and more robust then all these algorithms considered in this 

numerical study. 

The two-parameters quadratic model of function f  minimization 

At the k th iteration of the algorithm, let us assume that an inexact Wolfe line 

search was executed, that is the step-length k  satisfying (1.4) and (1.5) was 

computed. With this value of k  the following elements kkk xxs  1 and 

kkk ggy  1  can be computed. Now, let us consider the following quadratic 

approximate of function f  in 1kx
 as: 

 
,

2

1
)( 111 dBddgd k

TT

kk  
 (2.1) 

where 1kB
 is a symmetrical and positive definite approximation of the Hessian 

)( 1

2

 kxf
 and d  is the direction which follows to be determined. The direction 

1kd
 is computed as: 

 1 1 ,k k k k k kd g a s b y    
 (2.2) 
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where the scalars ka  and kb  are determined as solution of the following 
minimizing problem: 

 
)(min 11

,



 kk

Rba
d

kk . (2.3) 

Introducing 1kd  from (2.2) in the minimizing problem (2.3), then the parameters 

ka
 and kb

 are determined as solution of the following linear algebraic system: 

 ,)()( 11111   k

T

kkk

T

kkk

T

kkkk

T

kk gssBgyBsbsBsa  (2.4a) 

 .)()( 11111   k

T

kkkkkk

T

kkkk

T

kk gyyBgyBybyBsa  (2.4b) 

Suppose that the symmetrical and positive definite matrix 1kB  is an 

approximation of the Hessian )( 1

2

 kxf  such that ,1

1 kkk ysB 

   with 0 , 
known as the general quasi-Newton equation. With this the linear algebraic 

system (2.4) becomes: 

 ,)( 11

2

  k

T

kk

T

kkkk

T

kk gsgyybsya   (2.5a) 

 .)( 1111

2

  k

T

kkk

T

kkk

T

kkkk gyyBgyBybya   (2.5b) 

In order to solve the linear system (2.5) we must evaluate the quantities: 

kk

T

kk yBy 1
 and kk

T

kk yBg 11 
. Suppose that 1kB

 is positive definite. Now, 

using the classical quasi-Newton equation kkk ysB 1  we have: 

 kk

T

k

kk

T

k

kk

T

k

kk

T

kkk

T

k
kk

T

kk
sBs

sBy

sBy

sBsyBy
yBy

1

2

1

2

1

11
1

)(

)( 






 

 

k

T

k

k

T

k

kkk

T

k

kkk

T

kkkk

T

k

sy

yy

sBBy

sBBsyBBy 2

22

1

1
2

1

1

2

1

1
2

1

1
2

1

1
2

1

1 )(

)( 



 

 

k

T

k

k

T

k

kk

T

kk

kkkk

sy

yy

sByB

sByB
2

2

2

1

1
2

1

1

2

2

1

1

2

2

1

1
)(

)()( 


















k

T

k

k

T

k

kkkk

sy

yy

sByB

2

2

1

1
2

1

1

2

)(

,cos

1





 . (2.6) 

Since 1kB is unknown, it follows that the quantity   kkkk sByB 2

1

1
2

1

1

2 ,cos  in (2.6) 

is unknown. However, since the mean value of ,2/1cos2   then in (2.6) it seems 
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reasonable to replace the above quantity   kkkk sByB 2

1

1
2

1

1

2 ,cos  by 1/2. Therefore, 

k  can be computed as: 

 k

T

k

k

T

k
k

sy

yy 2)(
2

.  (2.7) 

Now, in order to compute k  we can use the BFGS update initialized with the 
identity matrix: 

 
k

k

T

k

T

kk

k

T

k

T

kkT

kkk

T

kk y
ss

ss

sy

yy
IgyBg 








  111

 

 
.

))(())(( 11
1

k

T

k

k

T

kk

T

k

k

T

k

k

T

kk

T

k
k

T

k
ss

yssg

sy

yyyg
yg 

 
 (2.8) 

It is worth saying that another way to compute k  is to use the BFGS update 

initialized, for example, from the scaling matrix .)/)((
2

Isys kk

T

k  However, we are 

interested to use (2.8) in our algorithm. With these developments the linear 
algebraic system (2.5) becomes: 

 
,)( 11

2

  k

T

kk

T

kkkk

T

kk gsgyybsya 
 (2.9a) 

 
.1

2

 k

T

kkkkkk gybya 
 (2.9b) 

Now, using (2.7) observe that the determinant of the matrix of the linear system 
(2.9) is: 

 0))(12()()( 22  k

T

kk

T

kk

T

kkk yyyysy   (2.10) 

if 2/1  and of course .0ky  

Supposing that ,0k then from the linear algebraic system (2.9) we get: 

 
 ,)()(

1
1

2

11  


 k

T

kkkk

T

kk

T

kk

k

k gyygsgya 
 (2.11) 

 
 .)())((

1
11

2

1  


 k

T

kk

T

kkk

T

kkk

T

k

k

k gsgyygysyb 
 (2.12) 

Therefore, if 0k , i.e. 0ky  and 2/1 , then the search direction is 

computed as in (2.2), where the scalars ka  and kb  are computed as in (2.11) and 
(2.12) respectively.  
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If the line search is exact, that is ,01 k

T

k gs then from (2.11) and (2.12) we have 

 

,
12

1

k

T

k

k

T

k
k

sy

gy
a 








 (2.13) 

 

.
12

1 1

k

T

k

k

T

k
k

sy

gy
b 










 (2.14) 

Observe that if 1 , then 
)/()( 1 k

T

kk

T

kk sygya 
 and 

,0kb
 i.e. the search 

direction is computed as: 

 

,1
11 k

k

T

k

k

T

k
kk s

sy

gy
gd 

 

 (2.15) 

which is exactly the Hestenes and Stiefel conjugate gradient algorithm. 

Proposition 2.1. Suppose that .01 kB  Then 1kd  given by (2.2) where the 

scalars ka
 and kb

 are computed as in (2.11) and (2.12) respectively is a descent 
direction. 

Proof. From (2.1) observe that .0)0(1  k  Since 01 kB  and 1kd  given by 

(2.2), (2.11) and (2.12) is the solution of (2.3), it follows that 
.0)( 11   kk d
 

Therefore,  

 
,0

2

1
11111   kk

T

kk

T

k dBddg
 (2.16) 

i.e. 1kd
 is a descent direction.■ 

Proposition 2.2. Suppose that the search direction 1kd
is given by (2.2) where the 

scalars ka
 and kb

 satisfy the linear algebraic system (2.9). Then the direction 

1kd
 satisfies the Dai-Liao conjugacy condition 

,11   k

T

kk

T

k gsdy 
with .0  

Proof. Since 1kd
 is given by (2.2) it follows that 1k

T

k dy
 is given by (2.9a), which 

is exactly the Dai-Liao conjugacy condition [12].  ■ 

Observe that our algorithm in which the search direction is given by (2.2) where 

the scalars ka
 and kb

 are computed as in (2.11) and (2.12) respectively and the 

step-length is obtained by the Wolfe line search (1.4) and (1.5) is a conjugate 
gradient algorithm with three terms. Our three-term conjugate gradient algorithm 
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is based on the minimization of the quadratic approximation of the function f  

into the current point, in which the searching direction 1kd is selected as a linear 

combination of ,1 kg ks and ky  where the coefficient of 1kg is .1  

Remark 2.1. Another possibility to define the search direction is to introduce in 

(2.2) a scalar or a matrix coefficient multiplying 1kg
 as:  

 1 1 1k k k k k k kd H g a s b y     
. (2.17) 

However, this is not as good as, for example, the limited memory quasi-Newton 

methods since if 1kH contains enough useful information about the inverse 

Hessian of the function ,f  we are better off using the search direction 

111   kkk gHd . The addition of the last two terms in (2.17) may prevent 1kd  
from being a descent direction, without saying anything about the definition of the 

symmetric and positive definite matrix 1kH  which requires several vectors, 
making the storage requirements similar to those of limited memory methods. 

This is the main reason we consider in our three-term conjugate gradient 
algorithm the search direction as in (2.2). 

Observe that in order to define the search direction (2.2) in (2.11) and (2.12) we 
must establish a procedure for computation of the parameter .  There are some 

possibilities, but in this paper we are interested to use the best search direction we 

know, i.e. the Newton direction. As a matter of fact, when the initial point 0x
 is 

enough close to the local minimum point 
*x , then the best search direction to be 

used in the current point 1kx  is the Newton direction .)( 1

1

1

2





 kk gxf  

Therefore, our motivation is to select the coefficients ka  and kb  in (2.2) in such a 

manner that for every 1k  the direction 1kd  is the best search direction we 

know, i.e. the Newton direction. Hence, the parameter   in ka  and kb  
coefficients from (2.2) can be determined by the relation 

 
.)( 1

1

1

2

1 



  kkkkkkk gxfybsag
 (2.18) 

Introducing the algebraic expressions of ka  and kb  from (2.11) and (2.12) 
respectively in (2.18), after some simple algebra we get the following quadratic 

equation: 

 ,0132 2    (2.19) 

which admits the following solutions: 1  and .2/1  
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The solution 2/1  is not suitable (see the condition (2.10)). The only solution 

admitted is 1 . Observe that the Newton direction is being used here only as a 
simple technical ingredient to compute a good value for the parameter .  

TTSCAL algorithm 

In this section we present the algorithm TTSCAL where the search direction is 

given by (2.2) and the coefficients ka  and kb  are computed as in (2.11) and (2.12) 

respectively with 1 . In our algorithm we use an acceleration scheme we have 

presented in [5]. Basically the acceleration scheme modifies the step length k  in 
a multiplicative manner to improve the reduction of the function values along the 
iterations. As in [5], in accelerated algorithm instead of (1.2) the new estimation 

of the minimum point is computed as  

 1k k k k kx x d    , (3.1) 

where 

k
k

k

a

b
  

, (3.2)  

,T

k k k ka g d
 

( ) ,T

k k k z kb g g d   ( )zg f z  and k k kz x d  .  

Hence, if 0,kb   then the new estimation of the solution is computed as 

1k k k k kx x d   
, otherwise 1k k k kx x d  

. Observe that 
2( ) ( ( ) ),T T

k k z k k k k k kb g g d d f x d      where kx  is a point on the line segment 

connecting kx
 and .z  Since 0,k   it follows that for convex functions 0.kb   

For uniformly convex functions, the linear convergence of the acceleration 
scheme is proved in [5]. 

Therefore, taking into consideration this acceleration scheme and using the 

definitions of g k , sk and yk  the following three-term conjugate gradient 

algorithm can be presented. 

TTSCAL algorithm 

Step 1. Select a starting point 0x dom f  and compute: 0 0( )f f x  and 

0 0( ).g f x  Select some positive values for   and .  Set 0 0d g   

and 0.k   Consider .1  

Step 2. Test a criterion for stopping the iterations. If the test is satisfied, then 
stop; otherwise continue with step 3. 
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Step 3. Determine the steplength k  using the Wolfe line search conditions 
(1.4) and (1.5). 

Step 4. Compute: k k kz x d  , ( )zg f z  and .k k zy g g   

Step 5. Compute: 
T

k k k ka g d , and 
T

k k k kb y d  . 

Step 6. Acceleration scheme. If 0,kb   then compute /k k ka b    and update 

the variables as 1k k k k kx x d    , otherwise update the variables as 

1k k k kx x d   . Compute 1kf   and 1.kg   Compute 1k k ky g g   and 

1 .k k ks x x   

Step 7. If 0k

T

k yy , then compute ka  and kb  as in (2.11) and (2.12) 

respectively, otherwise set )/()( 1 k

T

kk

T

kk sygya   and .0kb  

Step 8. Compute the search direction as: 1 1k k k k k kd g a s b y     . 

Step 9. 
Powell restart criterion. If 

2

1 10.2T

k k kg g g   then set 1 1k kd g   . 

Step 10. Consider 1k k   and go to step 2.  ■ 

If f  is bounded along the direction kd  then there exists a stepsize 
k
 satisfying 

the Wolfe line search conditions (1.4) and (1.5). In our algorithm when the Powell 
restart condition is satisfied, then we restart the algorithm with the negative 

gradient 1.kg   Under reasonable assumptions, the Wolfe conditions and the 
Powell restart criterion are sufficient to prove the global convergence of the 
algorithm. The first trial of the step length crucially affects the practical behavior 

of the algorithm. At any iteration 1k   the starting guess for the step k  in the 

line search is computed as 1 1 / .k k kd d    This proves to be one of the best 
selection of the starting guess in line search. 

Convergence analysis 

Assume that: 

(i) The level set  0: ( ) ( )nS x R f x f x    is bounded, i.e. there exists  

positive constant 0B   such that for all ,x S  .x B   

(ii) In a neighbourhood N  of S  the function f  is continuously differentiable 

and its gradient is Lipschitz continuous, i.e. there exists a constant 0L   

such that ( ) ( ) ,f x f y L x y     for all , .x y N  
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Under these assumptions on f  there exists a constant 0   such that 

( )f x    for all .x S  Observe that the assumption that the function f  is 
bounded below is weaker than the usual assumption that the level set is bounded.   

Although the search directions generated by (2.2), (2.11) and (2.12) are always 
descent directions, to ensure convergence of the algorithm we need to constrain 

the choice of the step-length .k  The following proposition shows that the Wolfe 

line search always gives a lower bound for the step-length .k  

Proposition 4.1. Suppose that kd  is a descent direction and the gradient 

f satisfies the Lipschitz condition 

( ) ( )k kf x f x L x x     

for all x  on the line segment connecting kx  and 1,kx   where L  is a positive 
constant. If the line search satisfies the Wolfe conditions (1.4) and (1.5), then 
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Proof. Subtracting 
T

k kg d  from both sides of (1.5) and using the Lipschitz 

continuity we get 
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Since kd  is a descent direction and 1,   (4.1) follows immediately. ■ 

The following proposition proves that in the above three-term conjugate gradient 

method, under the general Wolfe line search (1.4) and (1.5), the Zoutendijk [41] 
condition holds. 

Proposition 4.2. Suppose that the assumptions (i) and (ii) hold. Consider the 

algorithm (1.2) and (2.2) with (2.11) and (2.12) where kd  is a descent direction 

and k  is computed by the general Wolfe line search (1.4) and (1.5). Then 
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Proof. From (1.4) and proposition 4.1 we get 
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Therefore, from assumption (i) we get the Zoutendijk condition (4.2). ■ 

In [32] Powell proved that in conjugate gradient algorithms the iteration can fail, 

in the sense that 0kg    for all ,k  only if kd  sufficiently rapidly.  

More exactly, the sequence of gradient norms kg  can be bounded away from 

zero only if 0
1/ .kk

d


   This observation is fundamental and can be used for 
global convergence analysis of nonlinear conjugate gradient algorithms. For any 
conjugate gradient method with strong Wolfe line search (1.4) and (1.6) the 

following general result holds [28]. 

Proposition 4.3. Suppose that the assumptions (i) and (ii) hold and consider any 

conjugate gradient algorithm (1.2) where kd
 is a descent direction and k  is 

obtained by the strong Wolfe line search (1.4) and (1.6). If 
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k kd

 
 (4.3) 

then 

 
liminf 0.k

k
g




 (4.4) 

For uniformly convex functions we can prove that the norm of the direction 1kd   
generated by (2.2) and (2.11)-(2.12) is bounded above. Therefore by proposition 
4.3 we can prove the following result. 

Theorem 4.1. Suppose that the assumptions (i) and (ii) hold and consider the 

algorithm (1.2) and (2.2) with (2.11) and (2.12) with 1 , where kd
 is a descent 

direction and k  is computed by the Wolfe line search (1.4) and (1.5). Suppose 

that f  satisfies the Lipschitz condition and f is a uniformly convex function on 

,S  i.e. there exists a constant 0   such that 

 
2

( ( ) ( )) ( )Tf x f y x y x y      (4.5) 

for all , ,x y N  then 
lim 0.k
k

g



 (4.6) 

Proof. From Lipschitz continuity we have k ky L s . On the other hand, from 

uniform convexity it follows that
2
.T

k k ky s s  Now, using the Cauchy 
inequality, from Lipschitz continuity and uniform convexity we have: 
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On the other hand for 1  we have 
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From uniform convexity and Cauchy inequality observe that 
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From (2.11) using (4.7), (4.8) and (4.9) with 1  we get: 
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Now, from (2.12) using (4.7), (4.8) and (4.9) with 1  we get: 
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Therefore, from (2.2)  

1 1k k k k k kd g a s b y   
 3 4 ,M M  

 

showing that (4.3) is true. From proposition 4.3 it follows that (4.4) is true, which 
for uniformly convex functions is equivalent to (4.6). ■ 

Convergence analysis for general nonlinear functions exploits the assumptions (i) 

and (ii), as well as the fact that by the Wolfe line search 0T

k ky s   (strictly) and 
therefore it can be bounded from below by a positive constant, i.e. there exists 

0   such that .T

k ky s   

Proposition 4.4. If the search direction kd  is a descent one, then by the Wolfe line 

search condition (1.5) there exists a constant 0  such that .k

T

k sy  

Proof. Since kd  is a descent direction then .0)(  k

T

k dxf  Consider that k  is 

chosen to satisfy the second Wolfe line search condition (1.5). Then 
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since  
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Accordingly, 
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Therefore, from (4.13) we get: 
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i.e.  0k

T

k dy . 

Now, if in the above inequality (4.13) we let k
 approach zero, than the left-hand 

side approaches zero, while the right-hand side remains constant at the value 

0)()1(  k

T

k dxf
, which is impossible. Thus, the Wolfe line search prevents 

arbitrarily small choices of .k  Therefore, from (4.14), since 

kkkkk dxxs  1 , it follows that 
0k
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k sy
 (strictly). Besides, by the 

Archimedean property of the real numbers, there always exists a positive constant 

 , arbitrarily small, such that
k

T

k sy
.■ 
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Theorem 4.2. Suppose that the assumptions (i) and (ii) hold and consider the 

algorithm (1.2) and (2.2) with (2.11) and (2.12) with 1 , where kd
 is a descent 

direction, k  is computed by the Wolfe line search (1.4)-(1.5) and there exists a 

constant 0   such that 
T

k ky s 
 for any 1.k   Then 
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 (4.15) 

Proof. Since 
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k kg s 
 for any ,k it follows that 1 .T T T T

k k k k k k k ks g y s g s y s   
 By 

the assumptions (i) and (ii) it follows that 
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 (4.16) 

Suppose that 
0kg 

 for all 1,k   otherwise a stationary point is obtained. Now, 

using the standard assumptions (i) and (ii) we have 
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On the other hand,  
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From (2.11) using (4.17) and (4.18) we get: 
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On the other hand, from (2.12) using again (4.17) and (4.18) we have: 
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Therefore, from (2.2) 

 1 1k k k k k kd g a s b y   
6 72 .BM M  

 (4.21) 

Now, from proposition 4.3 it follows that (4.15) is true. ■ 

Numerical experiments and discussions 

In this section we report some numerical results obtained with an implementation 

of the TTSCAL algorithm. The code is written in Fortran and compiled with f77 
(default compiler settings) on a Workstation Intel Pentium 4 with 1.8 GHz. We 
selected a number of 80 large-scale unconstrained optimization test functions in 

generalized or extended form we presented in [4]. For each test function we have 
taken ten numerical experiments with the number of variables increasing as 

1000,2000,...,10000.n   The TTSCAL algorithm implements the Wolfe line 

search conditions with cubic interpolation, 0.0001,   0.8   and the same 

stopping criterion gk 

10 6 , where .
 is the maximum absolute component of 

a vector. In all the algorithms we considered in this numerical study the maximum 
number of iterations is limited to 10000. All algorithms implement the Powell 

restart technology, i.e. when 
2

1 10.2T

k k kg g g  , then the search direction is set 
to the negative gradient.  

The comparisons of algorithms are given in the following context. Let f i

ALG1
and 

f i

ALG2

be the optimal value found by ALG1 and ALG2, for problem 1, ,800,i   

respectively. We say that, in the particular problem i,  the performance of ALG1 
was better than the performance of ALG2 if:  

 f fi

ALG

i

ALG1 2 310  

 (5.1) 

and the number of iterations (#iter), or the number of function-gradient 
evaluations (#fg), or the CPU time of ALG1 was less than the number of 
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iterations, or the number of function-gradient evaluations, or the CPU time 
corresponding to ALG2, respectively. In this numerical study we declare that an 
algorithm solved a particular problem if the final point obtained had the lowest 

functional value among the tested algorithms (up to 
310

 tolerance as it was 

specified in (5.1). This criterion is acceptable for users who are interested in 
minimizing functions and not in finding critical points. 

In the first set of numerical experiments we compare TTSCAL versus ASCALCG 

[2, 3], CONMIN [35], AHYBRIDM [6], CG-DESCENT [18], THREECG [9] and 
TTCG [8].  

ASCALCG, elaborated by Andrei [2, 3], is an accelerated scaled conjugate 
gradient algorithm using a double update scheme embedded in the restart 
philosophy of Beale-Powell. The basic idea of ASCALCG is to combine the 

scaled memoryless BFGS method and the preconditioning technique in the frame 
of conjugate gradient method. The preconditioner, which is also a scaled 

memoryless BFGS matrix is reset when the Beale-Powell restart criterion holds. 
The parameter scaling the gradient is selected as a spectral gradient 

./1 k
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kk
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kk syss
 The search direction is computed as a double quasi-Newton 

updating scheme as: 
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 (5.2) 

where 11  kr gHv  and kr yHw 1  and 1rH  is the BFGS approximation to the 

inverse Hessian initialized with the identity matrix and scaled by the scalar 1r  at 
the r th iteration where the Beale-Powell restart test is satisfied: 
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 (5.3) 

The restart direction is computed as ,1

*

11   kkk gQd where 
*

1kQ  is exactly the 

BFGS quasi-Newton matrix, and at every step the approximation of the inverse 

Hessian is the identity matrix multiplied by the scalar ,1k i.e.  
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(5.4) 

For the step-length computation the algorithm implements the Wolfe line search 
conditions in the same manner as in CONMIN. 
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CONMIN, established by Shanno and Phua [35], (see also [33, 34]) is a conjugate 
gradient algorithm which may be interpreted as a memoryless BFGS 
quasi-Newton algorithm optimally scaled in the sense of Oren and Spedicato [29]. 

In CONMIN the scaling is combined with Beale-Powell’s restart criterion. 

The direction 1kd
in CONMIN is computed as: 

 
,111 kkkkkkk sByAgHd    (5.5) 

where 1kH  is BFGS approximation of the inverse Hessian which at every 

iteration is initialized with identity matrix, and kA  and kB  are specific matrices. 

The main drawback of this method is that if 1kH
contains useful information 

about the inverse Hessian of the function ,f  then we are better off using the 

search direction 111   kkk gHd
 since the addition of the last terms in (5.5) may 

prevent the direction 1kd
from being a descent direction unless the line search is 

sufficiently accurate.  

AHYBRIDM, elaborated by Andrei [6], is an accelerated hybrid conjugate 
gradient algorithm in which the search direction is computed as a convex 

combination of Hestenes-Stiefel [19] and Dai-Yuan [13] conjugate gradient 
algorithms. The parameter in this convex combination is computed in such a way 
the direction corresponding to the conjugate gradient algorithm is the best 

direction we know, i.e. the Newton direction, while the pair 
),( kk ys
 satisfies the 

modified secant equation 
,1 kkk zsB   where  
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CG-DESCENT was elaborated by Hager and Zhang [18] in order to ensure 

sufficient descent, independent by the accuracy of the line search. In 

CG_DESCENT the search direction 1 1

HZ

k k k kd g s    , where 
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satisfies the sufficient descent condition 
2
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CG-DESCENT is a modification of the HS algorithm in such a way when iterates 

jam the expression 
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becomes negligible. This modification of the HS scheme makes CG-DESCENT to 
perform better than HS [18]. 

THREECG, written by Andrei [9], is a simple three-term conjugate gradient 

algorithm which consists of a modification of the HS or of CG-DESCENT in such 
a way that the search direction is descent and it satisfies the conjugacy condition. 

These properties are independent by the line search. The direction 1kd   is 

computed as 1 1 ,k k k k k kd g s y       where 
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 (5.8) 

Also, the algorithm could be considered as a simple modification of the 
memoryless BFGS quasi-Newton method [9]. 

TTCG, also written by Andrei [8], is a three-term conjugate gradient algorithm, 
which is a modification of the Hestenes and Stiefel [19] or a modification of the 
CG_DESCENT by Hager and Zhang [18] algorithms, for which both the descent 

condition and the conjugacy condition are simultaneously satisfied.  

The algorithm is given by (1.2) where the direction 1kd   is computed as 

1 1 ,k k k k k kd g s y     
 where 

 

2

1 11 2 ,
T T

k k k k k
k T T T

k k k k k k

y s g y g

y s y s y s
  

 
    
 
      

1 .
T

k k
k T

k k

s g

y s
 

 (5.9) 

Intensive numerical experiments showed that TTCG is clearly more efficient and 

slightly more robust than THREECG [8]. 

Figure 1 shows the Dolan and Moré [15] CPU performance profile of TTSCAL 

versus these conjugate gradient algorithms.  

In a performance profile plot, the top curve corresponds to the method that solved 
the most problems in a time that was within a given factor of the best time.  

The percentage of the test problems for which a method is the fastest is given on 
the left axis of the plot.  

The right side of the plot gives the percentage of the test problems that were 

successfully solved by these algorithms, respectively. Mainly, the right side is a 
measure of the robustness of an algorithm. 

When comparing TTSCAL with all these conjugate gradient algorithms subject to 
CPU time metric we see that TTSCAL is top performer.  
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The three-term accelerated conjugate gradient algorithm TTSCAL is more 
successful and more robust than all these conjugate gradient algorithms. For 
example, comparing TTSCAL versus CG-DESCENT (see Figure 1), subject to 

the number of iterations, we see that TTSCAL was better in 645 problems (i.e. it 
achieved the minimum number of iterations in 645 problems).  

  

  

  

Fig. 1. TTSCAL versus ASCALCG, CONMIN, AHYBRIDM, CG-DESCENT, THREECH 

 and TTCG, subject to CPU time metric. 
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CG-DESCENT was better in 71 problems and they achieved the same number of 
iterations in 54 problems, etc.  

Out of 800 problems, only for 770 problems does the criterion (5.1) hold. 

Therefore in comparison with CG-DESCENT, TTSCAL appears to generate the 
best search direction and the best step-length, on average. It is known that, besides 

the conjugate gradient methods, for large-scale unconstrained optimization, two 
other methods can be successfully tried: the limited memory BFGS method 
(L-BFGS) and the discrete truncated-Newton method (TN). Both these methods 

use a low and predictable amount of storage, requiring only the function and its 
gradient values at each iterate. Both methods have been intensive tested on large 

problems of different types and their performance appears to be satisfactory [25].  

Therefore, in the second set of numerical experiments we compare TTSCAL 
versus LBFG (m = 5) [27] and TN [24]. 

L-BFGS is an adaptation of the BFGS method for solving large-scale problems. In 

BFGS method the search direction is computed as ,111   kkk gHd  where 1kH  

is an approximation to the inverse Hessian matrix of f , updated as 
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In L-BFGS method, instead of forming the matrices kH , a number of m  vectors 

ks and ky  that define them implicitly are saved, as is described in [27]. 
The numerical experience with L-BFGS method, reported in [17], indicates that 

values of m  in the range 73  m  give the best results. Therefore, in this paper 

we consider the value .5m  The line-search is performed by means of the 
routine CVSRCH by Moré and Thuente [22] which uses cubic interpolation.  

The TN method is described by Nash [24]. At each outer iteration of the TN 

method, for determination of the search direction kd  an approximate solution of 

the Newton system kkk gdxf  )(2

 is found using a number of inner iterations 
based on a preconditioned linear conjugate gradient method. The matrix-vector 

products required by the inner conjugate gradient algorithm are computed by 
finite differencing, i.e. the Hessian matrix is not explicitly computed.  

Besides, the conjugate gradient inner iteration is preconditioned by a scaled two-
step limited memory BFGS method with Powell’s restarting strategy used to reset 
the preconditioner periodically. In TN the line search is performed using the 

strong Wolfe conditions. 



 

A Three-Term Descent Conjugate Gradient Algorithm Using the Minimization of 

 the Two-Parametric Quadratic Model for Large-Scale Unconstrained Optimizat ion 25 

Figure 2 presents the Dolan and Moré CPU performance profiles of TTSCAL 
versus L-BFGS (m = 5) and TN, respectively.  

  

Fig. 2. TTSCAL versus LBFGS (m=5) and TN, subject to CPU time metric. 

Observe that TTSCAL is more efficient and more robust versus both LBFGS 

(m=5) and TN algorithms. These algorithms are different in many respects. The 
principles on which these algorithms are based are very different. The linear 
algebra in LBFGS and TN codes to update the search direction is more time 

consuming than the linear algebra in TTSCAL. This is the main reason why 
TTSCAL is more efficient and more robust in this numerical study. 

2. Conclusions 

Three-term conjugate gradient algorithms represent one of the most important 
developments in large scale unconstrained optimization. In this paper the search 

direction is selected as a linear combination of ,1 kg
 ks  and ,ky  where the 

coefficients in this combination are selected to minimize the quadratic model of 
the minimizing function in which the symmetrical approximation of the Hessian 

matrix satisfies the general quasi-Newton equation. The parameter in general 
quasi-Newton equation is determined by the formal equality between the search 
direction used in the algorithm and the Newton direction. The algebraic 

developments prove that the best value of this parameter is equal to 1. This 
mechanism for the search direction computation proved to be very effective both 

subject to the efficiency and to the robustness of the algorithm. Numerical 
experiments using a large collection of 800 large-scale unconstrained optimization 
test problems showed that the suggested three-term conjugate gradient algorithm 

is both more efficient and more robust than some known conjugate gradient 
algorithms as well as than the limited memory quasi-Newton LBFGS and the 

discrete truncated-Newton methods.  
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