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Abstract. The Charge Coupled Devices (CCDs) have multiple applications as particle 

detectors, in astronomy, etc. Their characterization, by means of some accurate evaluations 

of their main physical parameters is always necessary. Besides the classical Deep-Level 

Transient Spectroscopy Method (DLTS), the Dark Current Spectroscopy (DCS) is the basic 

experimental method used in this aim. In the frame of the DCS method, the evaluation of the 

main parameters of CCDs is achieved starting from the temperature dependence of the dark 

current, usually by means of the classical gradient method (CGM), the final results being 

associated to the attraction centers (attractors) of the CGM application. Given being the 

studies of the basic features of this procedure are very rare, the main goal of this work is to 

achieve a systematic study of the basic features of attractors. 

Keywords: Charge Coupled Devices, Dark Current Spectroscopy, Temperature dependence of the 

dark current, Classical gradient method, Attractors 

1. Introduction  

The multiple uses of the Charge Coupled Devices (CCDs) [as particle detectors, in 

astronomy, etc.] were examined by the scientific monographs [1], [2]. The 

possibilities of identification of the contaminants and/or defects produced in the 

CCDs crystalline lattice were recently examined by us in the frame of the work [3]. 

Given being the complex character of CCDs, the evaluation of their physical 

parameters cannot be achieved by means of deterministic procedures, being 

necessary the use of some iterative procedures (by means of successive 

approximations), as that of the gradient method. In this case, the estimated values 

will correspond to the central part of some specific attractor’s basins [4]. The 

identification of these central parts of the attractor’s basins is achieved using the 

least squares principle, minimizing the sum:  
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of the weighted sum of the squares of deviations of the calculated values ti, calc. of 

the test parameters (of the dark current and different temperatures, particularly) 

relative to the experimental values ti, exp. (Wi is the weight associated to the test 

parameter i, where i = 1, 2, … N). 
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Unfortunately, the practical use of the classical gradient method is sometimes 

hindered or misled by some specific numerical phenomena (instability, large 

oscillations, or pseudo-convergence, distortions, respectively) [5 - 8]. For the 

complex systems with several effective uniqueness parameters (as the CCDs), the 

intervening numerical phenomena are considerably more intricate than for the 

“mono-parameter” problems (e.g. the damped oscillator [9], the wave propagation 

in ideal media [5, 6], etc.). 

For this reason, this work is intended to the examination of the basic features of 

the attraction basins for some (CCDs) complex systems with several effective 

uniqueness parameters.  

In order to point out the basic features of the attractors, the following previous 

stages have to be studied: a) the rigorous quantum theory of the dark current in 

semiconductors, b) the choice of the corresponding dominant uniqueness 

parameters, c) the basic elements of the classical gradient method (CGM), d) 

choice of the zero-order approximations of the dominant uniqueness parameters 

and the study of the structure of the dark current sets at different temperatures; e) 

study of the convergence behavior of CGM, by means of some numerical 

experiments; f) the numerical phenomena associated to the CGM application on 

the EDCT, g) study of the strength levels of attractors, and only finally: h) the 

attractors basic features. 

2. Rigorous Quantum Theory of the Dark Current in CCDs 

The Charge Coupled Devices (CCDs) are complex systems, i.e. their rigorous 

(quantum) theoretical description requires the use of a huge number of 

(independent) uniqueness parameters (see e.g. [10], [11]). It is possible though to 

achieve some numerical descriptions of the complex systems in the limits of the 

existing experimental errors using a restricted (finite) number of uniqueness 

parameters, called “effective” parameters. In this aim, it is necessary to identify 

firstly the dominant uniqueness parameters, the effective ones being the dominant 

parameters that ensure a description of the studied complex system in the limits of 

the existing experimental errors. 

The choice of the effective uniqueness parameters starts from the most accurate 

existing theoretical model of the studied complex system [12], [13]. As it was 

found, this “constitutive” theoretical model of the semiconductor materials 

involved by CCDs is the rather old, but still the most effective, SRH quantum 

model of Hall [14], Shockley and Read [15].  

Inside the CCD region depleted of carriers, where n and p << ni, the rigorous 

quantum SRH relations (1) and (5) of the work [16] lead to the following 

expression of the dark current: 
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where n is the number of contaminant traps types, k
 is the geometrical average 

( pknk
) of the capture cross-sections of the free electrons and holes, 

respectively, and 
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is the polarization degree of the capture cross-sections corresponding to electrons 

(σnk) and holes (σpk), respectively, for the traps of type k.  

Finally, the depletion dark current [the second term of relation (2)] can be 

described by the “global” expression: 

 

























 

kT

E
Tpdg

kT

EE
hDeqTj

effg

eff
n

it
effdepdep

2
expsec)(

.,2/3

.
..,0

 (4) 

where the effective depletion pre-exponential factor is a weighted sum [the 

weights being the hyperbolic secant factors: 

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exponential factors of each type of traps:  
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where Ntk is the number of traps of type k in the considered pixel.  

Similarly, the effective value of the hyperbolic secant .
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 for each trap type, the 

corresponding weights being the pre-exponential factors 


ktrapDe ,0  for the trap type k. 

For |Et – Ei| > 0.15 eV, the depletion dark current will be less than 0.8% of its 

value for Et = Ei, hence the depletion dark current will become negligible relative 

to the diffusion one, and its study by means of the DCS method will become very 

difficult or even practically impossible. For this reason - for the Widenhorn-

Bodegom version [16], [10] of the DCS method - present interest only the very 

deep level traps, whose energies fulfill the condition: |Et – Ei| ≤ 150 meV.  
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Taking into account that the last sum of the expression (2) depends considerably 

on the trap type, the effective depletion current pre-exponential factor is in fact a 

weighted sum of the pre-exponential factors for each type of traps: 

 De
-
0,trap k = ½ xdepApixcnVthσkNtk , (6) 

where σk and Ntk are the capture cross-section and the number of traps of type k in 

the considered pixel. Excepting the pixel area (Apix), the values of the other 

5 factors from the expression (2) of the depletion dark current pre-exponential 

factor: (i) the size xdep of the depletion region, (ii) the pre-exponential factor 

cn = ni·T
-3/2

·exp(Eg/kT) of the intrinsic carrier concentration ni, (iii) the thermal 

velocity Vth (due to its dependence Vth = [8kT/(π·m*)]
1/2

 on the carrier effective 

mass), (iv) the capture cross-sections σk of the carriers of type k, and: (v) the 

concentration Ntk of the k-type of traps, are not accurately evaluated, their relative 

errors have frequently the magnitude order of 50%.  

From relation (6) one finds that the contribution of each trap of type k to the 

depletion dark current pre-exponential factor is:  

 De
-
0,trap k/(xdepApixNtk) = ½ cnVthσk (5’) 

 hence the total depletion dark current pre-exponential factor corresponding to the 

studied pixel is: 

 De
-
0,dep.pixel = ½ cn ΣVth,kσkNtkpixel (7) 

The relation (7) allows the evaluation of the pre-exponential factor of the 

depletion dark current for each pixel, in terms of the parameters of the specific 

contaminants embedded in the considered pixel. 

3. Choice of the Dominant Uniqueness Parameters 

According to our studies, the most accurate expression of the dark current (as a sum 

of the diffusion and depletion dark current) in CCDs, using some effective parameters 

(averaged, in order to limit the number of the uniqueness parameters), is [3]: 
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The accomplished study [17] pointed out the compatibility of the SRH quantum 

theoretical model with the existing experimental data for CCDs. A thorough 

examination of the expression (8) points out the following monotonic decreasing 

order of the 5 identified “effective” dominant uniqueness parameters in respect 

with their relative strength on the dark current values: a) the energy gap Eg (the 

strongest), then the natural logarithms of the: b) diffusion DiffD diff lnln .,0   and: 
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c) depletion DepD dep lnln .,0   dark current (in this order), d) the difference |Et-Ei| of 

the energies corresponding to the embedded traps and to the intrinsic Fermi level, 

and: e) the polarization degree d ≡ pdg (of weakest strength), respectively [3]. 

Unfortunately, the most important effective parameters for the identification of 

the defects and/or contaminants embedded in CCDs are the weakest strength ones: 

lnDep (see also [17]), |Et -Ei| and d ≡ pdg [3]. For this reason, the accuracy of 

these effective parameters evaluation will be carefully examined by this work. 

4. Basic Elements of the Classical Gradient Method 

As it is known, the classical gradient method aims to find the values of the 

effective uniqueness parameters (described by the column-vector u ), by means of 

the minimization of the sum S of weighted squares of the deviations of the 

calculated values ),( sutcalc  relative to the corresponding experimental values 

 expt
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where 
T

calc tt )( .exp.   is the transposed of the difference of the column-vectors 

.exp. , ttcalc , W  is the diagonal matrix of weights, and s  is the vector of the state 

(or process) parameters. 

The vector 
)(IC  of the corrections of the vector u  of the uniqueness parameters in a 

certain successive approximation (iteration) I is obtained by means of the mini-

mization condition of the sum S (exact if the functions ),( putcalc  would be linear):  
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obtaining the expression [18]: 
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where the Jacobean matrix 
)(IJ  is defined by its elements: 
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and the deviation (column) vector is defined by the expression:  
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where 
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t

 is the column-vector of the calculated values of the test parameters in 

the iteration I. 

An important feature of the gradient method efficiency is the so-called relative 

standard deviation, defined starting from the weighted sum of the deviations 

squares (9), by means of the expression: 
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where N is the number of the studied (independent) test parameters. 

5. Choice of the zero-order approximations of the dominant uniqueness 

parameters. Study of the structure of the dark current sets at different 

temperatures. 

It is very well known the extremely important role of the zero-order 

approximations to avoid the unpleasant numerical phenomena possibly 

intervening in the classical gradient method use. 

The analysis of the main procedures used to choose the zero-order approximations 

corresponding to the numerical study of the temperature dependence of the dark 

current in CCDs [the so-called Dark Current Spectroscopy (DCS) method] points 

out the presence of 2 different strategies: a) that considering the whole ensemble 

of the existing experimental data [19], [16], b) the works preferring the choices of 

the zero-order approximations specific to the particular structure (for each pixel) 

of the experimental input data. 

The first (general) procedure of the zero-order approximations choice starts from 

the overall analysis of the existing available results, defining these approximations 

by means of some average values for silicon: lnDiff
(0)

 ≈ 34.9 [16], p. 199, lnDep
(0)

 ≈ 

19 [16], p. 200, Eg = 1.08 eV [19], fig. 2, p. 2557, the value Eg = 1.10 eV [19], p. 

2556 being probably a rounded version of the previous one. We will mention also 

that all our numerical tests of the Sze [20] – Varshni [21] empirical expression: 
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where Ego = 1.1557 [20] … 1.17 eV [21], 
 ,]20[73.4]...21[021.7/10 4   KeV

 

β = 1108 [20] … 636 K [21], led to considerable disagreements with the 

experimental data.  
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As it concerns the difference of energies of the traps and of the intrinsic Fermi 

level, respectively: |Et – Ei|, the analysis of the numerical results presented by the 

synthesis works [22], [10], [3] shows that a reasonable value of the zero-order 

approximation is: |Et – Ei|
(0)

 ≈ 0.1 eV.  

The second procedure of the zero-order approximations choice starts [10] from the 

least-squares fits of the temperature dependencies (specific to each pixel) of the 

dark current corresponding to the lowest (222… 242 K, field where the depletion 

dark current is prevailing) temperatures, and to the highest (272… 292 K, where 

the diffusion current prevails) ones, the indicated temperatures corresponding to 

the experimental studies [16], [10]. One finds [17] that the values of the zero-

order approximations of the main uniqueness parameters can be evaluated by 

means of the relations:  

 
ksE diffg 

)0(

, diffdiffdiff TcDe
~

ln3ln ,0 

, 
2ln

~
ln

2

3
ln ,0 

depdepdep TcDe
, (15) 

and:  
  kssEE depdiffit  2

)0(

 (16) 

where depdiff ss ,.  and: depdiff cc ,.  are the slopes and the ordinates of the crossing 

points (intercepts), respectively, of the regression lines (least-squares fits) of the 

temperature dependencies of the dark current in the regions of prevalence of the 

diffusion, and of the depletion dark current, respectively: 
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while depdiff TT
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,
~

 are the average temperatures corresponding to the above indicated 

temperature ranges. 

It results also [17] that the ratio of the slopes diffdep ss ,
 corresponding to the 

depletion and diffusion prevalence, respectively, is:   

 gitdep
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For the particular case of the strongest uniqueness parameter of the temperature 

dependence of the dark current of CCDs - the energy gap Eg, it is possible to find 

an efficient compromise of the 2 above presented methods of the zero-order 

approximation choice. In this aim, one observes that while: a) the Sze’s limit for 

silicon: Ego ≈ 1.17 eV is considerably larger than the usually accepted values (see 

e.g. [10]): Eg = 1.081.10 eV, b) the modulus Eg,Lin of the slope of the line joining 

the points corresponding to the extreme temperatures (222 and 291 K, for the 
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experimental data [16], [10]) of the plot 
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 is less than Eg (it is 

practically equal to Eg for the diffusion term of the dark current [first term in 

equation (8)], but it is considerably less than Eg (approximately equal to Eg/2) for 

the depletion term [the second one in (8)], the average value: 
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can be used successfully as a zero-order approximation Avegg EE ,
)0(


 of the energy 

gap (together with the other “general” zero-order approximations, see above). 

6. Study of the convergence behavior of the classical gradient method, by 

means of some numerical experiments 

6.1. Evolution behavior similitude with the over-damped oscillators 

The study (by means of some numerical experiments) of the convergence speed of 

the CGM [23] – [25], [18] (pp. 177-183), points out a certain similitude with the 

physics of the oscillators with frictions [4], with that of the over-damped 

oscillators [9] (p. 138), particularly. Table 1 and figures 1, 2 present some 

correspondences between the parameters and the evolutions of the: a) relative 

standard error in the frame of CGM aided DCS of CCDs (obtained by means of 

some numerical experiments) and: b) elongation of the over-damped mechanical 

oscillators (see also [18]). Figure 3 provides a simplified graphical explanation of 

the local climbing of the standard error hill (see fig. 1).  

Table 1 

Similitude between the evolutions in the non-periodic regime of the damped 

oscillators and those in the frame of the gradient method procedures, 

respectively 

Over-damped mechanical oscillator Gradient method procedures 

x (space coordinate) u (uniqueness parameter) 

t (time) I (iteration) 

U (potential energy) σ (relative standard error) 

x  (velocity) Iu  /  

s  (change of minimized parameters)   (change of the minimized test parameters) 

x  (for 1 time step) x   

uJ
Cu




/

11

  (for an additional iteration) 
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 Fig. 1. Evolution types  Fig. 2. Evolution vs. the potential  Fig. 3. Explanation of the local  

  and standard error hill profile.  climbing of the standard error hill. 

6.2. Numerical regularities in the successive approximations provided by 

the CGM for the evaluation of the main parameters of CCDs 

This work studies the experimental data concerning the temperature dependence 

of the dark current in CCDs reported in the frame of the works [16] and [10]. 

Given being the approximately exponential rise of the dark current with 

temperature [see relation (8)], the values of the dark current at the lowest studied 

temperatures (222 and 232 K) are very small and the corresponding evaluation 

errors are rather high.  

That is why our numerical results refer to the sets of the dark currents 

corresponding to the highest 6 temperatures studied by the works [16], [10] 

(between 242 and 291 K), and to the sets for all the 8 studied temperatures (from 

222 to 291 K). 

From the huge amount of obtained numerical data, we selected and we present in 

the frame of the Table 2 the found numerical regularities referring to the ratios of 

the successive relative standard errors )(I  for the sets of studied temperatures, 

and of the deviations )(ID  of the calculated dark current for some of the studied 

temperatures from the corresponding experimental values [10].  

The obtained numerical data synthesized by Table 2 point out a new numerical 

phenomenon: the first 2 figures of the ratios of successive standard errors 

)1(/)( II   and deviations )1(/)( IDID  of the calculated dark current for some 

of the studied temperatures from the corresponding experimental values, 

respectively, are common for the first figures, for the first iterations.  

Concerning the newly found numerical phenomenon, we can underline that its 

mechanism can probably be explained by means of the method of “transfer 

coefficients” (see e.g. [19], [20]), but its implementation will be considerably 

more difficult due to the multiple (independent) uniqueness parameters 

corresponding to this application. 
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Table 2 

Calculated ratios of the successive relative standard errors 
)(I  for some pixels and sets of 

studied temperatures, and of the deviations )(ID  of the calculated dark current from the 

experimental value, respectively (see also [10]) 

Pixel )1(/)( II  for 31;247 29; 88 

Itera-

tion I 222…291 K 242…291 K 
)1(/)( II    

242…291 K 

)1(/)( IDID

for 232 K 

)1(/)( IDID   

for 291 K 

1 1.309 1.300 2.723 2.731 2.720 

2 1.287 1.286 2.728 2.741 2.723 

3 1.287 1.286 2.744 2.740 2.731 

4 1.287 1.286 2.789 2.732 2.751 

5 1.288 1.287 2.920 2.749 2.810 

6 1.289 1.287 3.330 2.817 2.979 

7 1.290 1.288 4.886 3.081 3.515 

8 1.291 1.289 4.941 4.492 5.753 

9 1.292 1.290 1.0123 -5.733 422.984 

10 1.294 1.292 1.0009252 -3.941 - 0.0658 

11 1.295 1.293 1.00002024 0.378 1.08456 

12 1.297 1.295 1.0000005399 1.098317 0.98708 

13 1.299 1.297 1.0000000246 0.9835195 1.002218 

14 1.300 1.300 0.99999999827 1.00285946 0.9996161 

15 1.300 1.303 1.000000000232 0.99950476 1.00006653 

16 1.300 1.305 0.9999999999629 1.00008583 0.99998847 

17 1.291 1.308 1.000000000006524 0.99998512 1.000001998 

18 1.277 1.311 0.9999999999988699 1.0000025779 0.9999996537 

19 1.254 1.314 1.000000000000195 0.999999553 1.00000006001 

By means of the above finding, it is possible to define the upper limit of the Ilin. of 

this property (see Table 3). Similarly, it is possible to define the center Isteep. of the 

steepest descent zone, as the value of the iteration I corresponding to the largest 

value of the ratio )1(/)( II  . Finally, we can define the limits of the attractor’s 

neighborhood region and of the attractor’s central zone by means of the integers 

Ineighb., Icentr.z., as the nearest to the values %3.22223.0)(5.1)(ln  II   and 

%83.10183.0)(0.4)(ln  II  . In order to be possible to understand better 

the meaning of these notions, Table 3 below indicates the values of these 4 indices 

for the pixels and temperature ranges presented by Table 2. 
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Table 3 

The values of the indices Ilin., Isteep., In and Ic for the pixels and sets of studied temperatures 

Pixel )1(/)( II  for 31;247 29; 88 

Iindex 222…291 K 252…291 K 
)1(/)( II   

252…291 K 

)1(/)( IDID  

for 232 K 

)1(/)( IDID  

for 291 K 

Ilin. 13 13 4 4 5 

Isteep. 15 23 7; 8 9 9 

Ineighb. 21 21 8 2 - (never reached) 

Icentr.z. - (never reached) 30 ≈ 10 4 … 5 - (never reached) 

The above defined parameters allow to divide the attractor’s space along the 

gradient procedure trajectory in 4 regions: 

 I. The far linear (in ln ) ≡ exponential (in σ) regions of the attractor’s 

basin, between )0(u  and )( .limI
u , where the last two vectors correspond to the 

ensembles of uniqueness parameters for the zero-order approximation and for the 

“limit” iteration with 2 common figures of the studied ratios, 

 II. The steepest descent region, between )( .limI
u  and 

)( .neighbI
u  

 III. The attractor’s neighborhood region, between 
)( .neighbI

u  and )( ..zcentrI
u  

 IV. The attractor’s central zone, between )( ..zcentrI
u  and )(lim I

I
u


. 

6.3. Descent of the relative standard error well (pit) in the frame of the 

successive approximations (iterations) of the classical gradient 

method used for the evaluation of the main parameters of CCDs 

Given being the already reported results, we consider as the most suitable 

representation of the standard error well descent – the plot )(ln If . To illustrate 

the above presented considerations, as well as to illustrate with some examples the 

typical evolutions of the classical gradient method procedure applied to the 

evaluation of the basic parameters of the temperature dependence of the dark 

current in CCDs, figures 4 and 5 indicate the plots )(ln If  for the pixels 31, 

247; 61, 140, and 121, 200, respectively. 

Fig. 4 illustrates the 4 main regions of the attractor’s space, along the direction of 

the gradient method procedure, for the versions of high accuracy (processing of 

the experimental results for the 6 higher temperatures: 242…291 K) and of lower 

accuracy (the above plot), of the classical evolution regime I of an over-damped 

oscillator (see fig. 1). Fig. 5 presents both the local climbing of the standard error 

hill (regime II) by means of the )(ln If  plot corresponding to pixel 121, 200 

(for the 6 higher temperatures 242…291 K), as well as the apparent “relaxation” 
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(regime III) after an accidental fit of the lowest level of the standard error. We 

have to mention also that: (i) the plot a) from figure 5 involves additionally 

multiple oscillations, as an effect of the several freedom degrees (described by Eg, 

lnDiff, lnDep and |Et – Ei|, (ii) the bottom of the standard error well can be 

determined more accurately by means of the method of damped gradient method 

(see e.g. [25]), which corrects the relation (11) by the introduction – in the zone of 

the studied pit bottom – of an attenuation factor λ (less than 1) suitably chosen:  

 )()(
1

)()()( IIIII DWJJWJC
TT













 .  (11’) 

 

Fig. 4. Descent of the standard error well (pit) for the pixel 31, 247 and the ensembles of 8 temperatures 

222…291 K (above) and 6 temperatures: 242…291 K (below). 

 

Fig. 5. a) Local climbings ↑ of the standard error hill (pixel 121, 200 for 242…291 K, plot marked by •), 

b) Accidental identification ↓ of the  standard error pit bottom  

(pixel 61, 140, for all 8 temperatures, symbol ⊙), followed by “relaxation”. 
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7. Study of the strength levels of attractors 

7.1. Numerical Phenomena met in the frame of CGM aided DCS 

Given being the following study will meet different types of typical numerical 

phenomena: a) Instability (symbol Inst.), b) Pseudo-Convergence (symbol Ps.), c) 

Oscillations (symbol Osc.), and – of course: d) the Convergence towards some 

specific (with physical meaning) attractors, denoted in terms of  their strength: (i) 

VS (very strong), (ii) S (strong), (iii) MS (medium-strong), (iv) M (medium), (v) 

MW (medium-weak), (vi) W (weak), (vii) VW (very weak) and (viii) VVW 

(extremely weak), we synthesized in the illustrative figure 6 the typical 

appearance of these phenomena in the uniqueness parameters evaluation by the 

gradient method procedure (see also [17]). 

 

Fig. 6. Main types of numerical phenomena met in the evaluation  

of the uniqueness parameters by the gradient method. 

7.2. Numerical experiments concerning the attractors strength levels 

Taking into account that the usual single precision corresponds to 7 decimal 

places (for a 32-bit word machine [4], p. 23), it is possible to define the strength 

levels of an attractor relative to a certain uniqueness parameter by means of the 

number of common first decimals for several neighbor zero-order approximations: 

7 common first decimals (VS), 6 (S), 5 (MS), 4 (M), 3 (MW), 2 (W), 1 (VW), 0 

but a certain weak convergence (VVW). Of course, the general attractor’s 

strength level will be its strength level relative to the weakest studied uniqueness 

parameters, i.e. relative to |Et – Ei| for the charge coupled devices.  
Table 4 
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Final results concerning the values of the uniqueness parameters Eg, lnDiff, lnDep and |Et – Ei|, 

by means of the classical gradient method (for the experimental data see [16] and [10]) 

Coordinates 

of the pixel 

Eg Zero-order 

Approximation 

M 

Eg,eff. (eV) LnDiff lnDep |Et – Ei|, meV 

Numerical 

phenomenon 

& Attractor 

61, 140 

-10  0.580869* 9.402933* 39.026176* 381.94396* Pseudocon-

vergence -8 0.564653* 8.573753* 40.444841* 414.60294* 

-6 1.072556 31.079047 17.52459 28.92168 

Very strong 

attractor 

-4 1.072556 31.079047 17.52459 28.92168 

-2 1.072556 31.079047 17.52459 28.92168 

0 1.072556 31.079047 17.52459 28.92168 

2 1.072556 31.079047 17.52459 28.92168 

4 1.072556 31.079047 17.52459 28.92168 

6; 8 & 10 Instability starting from iteration 4 (m = 6) and 2 (m = 8 and 10), resp. 

121, 200 

-10 1.067221 30.865956 15.540974 13.31129 

Weak at-

tractor; also, 

medium 

amplitude 

oscillations 

-8 1.067238 30.866604 15.567840 12.93887 

-6 1.067272 30.867992 15.659601 13.543185 

-4 1.067263 30.867633 15.630247 13.350595 

-2 1.067251 30.867136 15.596534 13.128485 

0 1.067257 30.867372 15.611681 13.22839 

2 1.067259 30.867458 15.617526 13.2669 

4; 6; 8; 10 Instability from iteration 4 (m = 4) and 2 (m = 6; 8 and 10), respectively 

241, 320 

-10 1.074871 31.172302 15.917362 11.094875 

Extremely 

weak 

attractor; 

also, large 

amplitude 

oscillations 

-8 1.075900 31.212400 16.033195 9.955040 

-6 1.075840 31.210004 16.349191 6.748465 

-4 1.075873 31.211324 16.765059 8.779725 

-2 1.075894 31.212169 15.976038 9.669870 

0 1.075681 31.203713 15.338220 6.802035 

2 1.075685 31.203874 15.336640 6.792465 

4; 6; 8; 10 Instability from iteration 3 (m = 4) and 2 (m = 6; 8 and 10), resp. 

31, 247 

-10 0.587015* 10.54143* 44.932172* 406.37874* Pseudocon-

vergence 

-8 Instability starting from iteration 9 

-6 0.574936* 9.935104* 45.115503* 472.32972* Pseudocon-

vergence 

-4 1.190187* 35.636207 19.734559 9.742655 Extremely 

weak 

pseudo-

attractor; 

also, large 

amplitude 

oscillations 

-2 1.190174* 35.635711 19.830541 10.175875 

0 1.190169* 35.635528 19.859227 10.302720 

2 1.190204* 35.636852 19.641657 9.317010 

4 1.190280* 35.639586 19.217493 7.276885 

6 1.190267* 35.639176 19.303182 7.692265 

8; 10 Instability starting from iteration 2 
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Taking into account that:  

 a) the effective energy gap Eg,eff. is the strongest uniqueness parameter 

intervening in the description of the temperature dependence of CCDs dark 

current [see e.g. (8)],  

 b) the most efficient zero-order approximation of this parameter is given 

by the average value Eg,Ave , calculated by means of relation (19), starting from the 

Sze’s general estimation Eg,Sze and the so-called linear approximation Eg,Lin 

(specific to each pixel), we will define the required successive neighbor zero-

order approximations by means of the integer  10,8,6,4,2,0,2,4,6,8,10 m  

and of the relation: 

  )(
10

)( ,,,
)0(

AvegSzegAvegg EE
m

EmE  . (20) 

In this manner, the study of the attractor’s strength levels becomes possible for all 

pixels, and we will select – by means of Tables 4 and 5 - only few, but most 

significant, particular examples. 

Finally, a last question: could be possible to predict the convergence behavior of 

the gradient method procedure for the existing set of experimental data 

)(TfDe   corresponding to a certain pixel?  

Obviously, the efficiency of the classical gradient method procedures depends on 

the accuracy of the chosen set of zero-order approximations.  

That is why our analysis (see Table 5) will start from the zero-order 

approximations provided by the structures of the experimental data [see relations 

(15)-(18)].  

We have to mention that the values of the effective uniqueness parameters of the 

20 studied CCDs pixels were found [17] as located inside the intervals:  

eVEg 11.1...048.1 , 36.32...19.30ln Diff , 41.19...59.14ln Dep  and eVEE it 4.45...8.6||  .  

As it concerns the zero-order approximations, it is expected to be sometimes even 

outside these intervals, but not too much (for Eg and lnDiff, especially).  

The symbols of the attractors’ strength levels are indicated by bold characters in 

the last column of Table 5, while the atypical values of the zero-order 

approximations provided by the experimental data structure [relations (15)-(18)] 

are underlined. 
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Main parameters of the structure of the considered set of experimental data  

and the numerical phenomena intervening in the classical gradient procedure  

of evaluation of the main parameters of CCDs 

Table 5 

Studied 

pixel 

)0(
.,effg

E  

(eV) 

depdiff ss /

 

)0(ln Diff  )0(ln Dep  
)0(|| it EE 

(meV) 

Successive (m↑) 

convergence 

behaviors 

41, 120 1.0754 1.0948 31.2582 35.0979 443.8277 Inst., Ps-converg.  

61, 140 1.0951 1.8344 29.7980 16.2707 46.7512 Ps; VS; Inst. 

81, 160 1.0573 1.6633 30.6121 19.5750 107.015 Ps; MW; Inst. 

101, 180 1.0825 1.7172 31.6006 18.9916 89.1394 W 

121, 200 1.0634 1.5713 30.8481 21.4230 145.0874 W 

141, 220 1.0730 1.8727 31.2196 16.2769 36.4761 Ps; W; Inst. 

161, 240 1.0833 1.6352 31.6390 20.5334 120.8284 Ps; Inst.; VS;Inst. 

181, 260 1.0817 1.7283 31.5467 18.7122 85.0232 Ps; W; Inst. 

201, 280 1.0667 1.7984 31.0414 18.1095 59.7857 Ps;Inst.;MW;Inst 

221, 300 1.0801 1.9380 31.5415 16.1143 17.2792 Ps; MS; Inst. 

241, 320 1.0647 1.5424 30.9015 22.1473 157.1197 VVW; Inst. 

261, 340 1.0725 1.6102 31.2647 21.6275 129.8126 Ps; Inst.; Ps; Inst. 

281, 360 1.0534 1.7251 30.5313 19.0919 83.9176 Ps; VS; Inst. 

301, 380 1.0122 1.62016 28.9163 19.5766 118.6561 Ps; Inst. 

321, 400 1.1261 1.6477 33.3843 20.8546 120.3996 Inst.; MW; Inst. 

341, 420 1.0234 1.5826 29.3075 20.5133 134.943 Inst.; Ps; Inst. 

29, 88 1.0950 1.6684 32.1206 20.8211 108.801 Ps; MS; Inst. 

31, 247 0.9894 1.6873 27.9587 18.0671 91.6646 Ps; Inst.; Ps; Inst. 

161, 289 1.1384 1.1654 33.7624 34.1341 407.632 W 

188, 471 1.0888 1.7897 31.8896  17.6422 63.9686 S 

The analysis of the results synthesized by Table 5 points out that: 

 a) the chosen definitions ensure a rather uniform distribution of the 20 CCD 

pixels indicated by work [10] over the attractors’ strength levels: 3 very strong 

attractors (pixels 61, 140; 161, 240 and 281, 360), one strong attractor (pixel 188, 

471), 2 medium-strong (29, 88 and 221, 300), 3 MW (81, 160; 201, 280 and 321, 

400), 5 weak (101, 180; 121, 200; 141, 220; 181, 260 and 161, 289), one VVW 
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(241, 320), 4 pseudo-convergence cases (261, 340; 301, 380; 341, 420 and 31, 247) 

and a set of experimental data leading to instability (that of pixel 41, 120);  

 b) though there is a sure co-relation between the atypical values of certain 

zero-order approximations and the pseudo-convergence or instability of the 

gradient method iterative process, sometimes a set of atypical values of the zero-

order approximations can equilibrate the computation system leading to some (of 

course, weak or very weak) physical attractors (see e.g. pixels 161, 289 or even 

321, 400);  

 c) if the knowledge of the contaminants and/or defects embedded by the 

crystalline lattice if a certain pixel is important, but the structure of the first 

measurements (e.g. [10]) leads to pseudo-convergence of instability, it is 

necessary to repeat these measurements. The criterion of an accurate structure of 

the new set of experimental data is to find the inclusion of the zero-order 

approximations calculated by means of relations (15)-(18) in the already found 

intervals (see above and [17]). 

8. Conclusions 

This work studied the main features of the classical gradient procedure for some 

complex (with a huge number of uniqueness parameters) physical systems, i.e. for 

some particle detectors as the charge coupled devices (CCDs).  

It was found that: 

 a) the effective (i.e. dominant parameters, used to reduce the number of the 

studied uniqueness parameters to a level allowing efficient computation 

procedures) uniqueness parameters have slightly, but different values than their 

corresponding physical parameters; e.g. while: (i) the physical energy gap Eg is 

temperature dependent, its associate effective parameter Eg,eff. is temperature 

independent, (ii) the physical difference of energies of a certain trap (Et) and of 

the intrinsic Fermi level (Ei): |Et – Ei| corresponds to a given contaminant or lattice 

defect, its effective parameter |Et – Ei|eff. could be (if the studied pixel involves 

more than one type of traps) an average over the different types of involved traps, 

 b) the first iterations of the gradient method procedure present usually a 

monotonic (in arithmetic progression) decrease of the logarithm of the standard 

error ln , i.e. a new numerical phenomenon, identified by this work, 

 c) using this newly found numerical phenomenon, it was possible to define 

the main domains of each attraction center (attractor): (i) the linear (in ln , or 

exponential in the standard error σ) field, (ii) the steepest descent region of the standard 

error well (pit): )(ln If , (iii) the attractor’s central zone (for ln < -4), (iv) the 

attractor’s neighborhood [for  4;5.1ln  ], 
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 d) there were defined and determined for the sets of experimental data 

concerning the temperature dependence of the dark current corresponding to the 

20 studied CCDs pixels [17] the attractors strength levels relative to: (i) each 

effective uniqueness parameter, (ii) a studied pixel. Given being that these 

strength levels are strongly related to the accuracy of the uniqueness parameters 

evaluation, their knowledge (and eventual improvement, by new measurements) 

seems to be essential for accurate assignments of the contaminants and/or defects 

embedded in the crystalline lattice of the pixels of certain particle detectors, as the 

charge coupled devices (CCDs) [3]. 
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