SILICON CARBIDE DEVICES CHARACTERISATION SYSTEM

Laurențiu TEODORESCU¹, Andrei-Sorin GHEORGHE²

Abstract. The measuring results of some commercial wide band gap semiconductor devices by using a characterisation system which may work between 50-80°C are presented in this paper. There are described the system blocks and the control software. The temperature characterisation system has a DC power supply furnace and a semiconductor device characterisation system as main components. The obtained data files may be easily processed, being in .xls format, and device characterisation may be done with proprietary measuring software.

1. Introduction

Wide band semiconductors are produced today to be used in high temperature environment to fulfil special tasks in a wide area of research and industry applications. In the last time we may observe a high interest to obtain devices working at high temperatures in aerospace and military industries, nuclear power plants, cement factories, siderurgy [1]. The purpose of this paper is the study of some commercial low cost silicon carbide Schottky diodes [2-5] using an own designed temperature characterization system. The main properties of this system are:

- I/V device characteristic is automatically done;
- voltage bias range: -200 V ... +200 V;
- current limits: $-1 A \dots + 1 A$;
- device temperature set range: 50° C and 800° C;
- absolute temperature set precision: better than 0.5° C;
- relative temperature measuring precision is 0.1°C;
- measured data is in .xls format;
- maximum time for device temperature stabilisation with a maximum 0.5°C deviation is 150 minutes for any temperature value;
- typical time for device temperature stabilisation with a maximum 0.5°C deviation is 90 minutes under 200°C.

We should notice that the maximum temperatures of the current silicon systems are lower than the working temperatures of the designed system. A main problem comes when we talk about encapsulating high temperature semiconductor devices.

Keywords: silicon carbide devices, temperature characterization system, wide band semiconductors measurement

¹University "Politehnica" of Bucharest, lteodorescu@arh.pub.ro.

²Infineon Technologies Romania &Co. SCS, ghiga_andrei@yahoo.com.