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Abstract. In this paper we propose a simulated combination between the advantages of two 
security systems, a chaotic signal system and a quantum cryptography protocol. We propose a 
theoretical scheme for implementing the quantum algorithm to send the chaotic key 
information from the transceiver to the receiver. To create and simulate the chaotic circuits 
we simulate several components such as an electro-optic modulator (EOM) is driven by a 
voltage V, larger than its half-wave voltage Vn, so it will operate in a highly nonlinear regime. 
When the device is powered optically by a monochromatic source S, its response in intensity is 

well known to yield a nonlinear function 2( ) cos ( / (2 ) )BF V V V    which features a number 

N of extrema given by /ppN V V , where Vpp, is peak-to-peak driving voltage and  is related 

to the bias voltage VB by / (2 )ppV V   . The simulation is based on a theoretical 

experimental setup. The scheme is designed as follows: the chaotic transmitter is formed by an 

impedance-matched laser diode (LD) - wavelength 
0 , with a time-delayed feedback loop 

containing an electro-optic modulator EOM, powered by a source S, operating nonlinearly. 
The LD operates above its threshold, in the linear part of its power-current curve. The optical 
intensity i(t) of LD is modulated around a mean intensity I0 by the modulation voltage 

0( ) : ( ) ( )s t I t I i t  ,where ( ) ( )i t s t   is the slope of the power-voltage curve of the LD at its 

operating point. The feedback loop is formed by a detector D1 and an amplifier (voltage gain 

g1), an EOM (half wave voltage V, optical transmission ) powered by an auxiliary optical 
continuous-wave (CW) source S (power P), a delay line (an optical fiber with a group 
propagation time T), and a photo detector D2 (voltage gain g2). We use the BB84 protocol to 
encrypt the information used to synchronize the chaotic circuits. The BB84 protocol is 
described using photon polarization states for transmitting the information. The transmitter 
(Alice) and the receiver (Bob) are connected through a quantum communication channel that 
allows quantum states to be transmitted. For the photons this channel is represented either by 
open space (air) or optical fiber. We simulate the open space channel to minimize the loss or 
possible interruptions. This quantum protocol is designed with the assumption that an 
eavesdropper (Eve) can interfere in any way with both receiver and transceiver. This protocol 
offers security from encoding the information in non-orthogonal states. The quantum 
indeterminacy represents the fact that these states cannot in general be measured without 
disturbing the original state. In addition the receiver and transceiver must communicate via a 
public classical channel, such as radio or internet to send the encryption key. The three 
methods of securing a communication system – chaos, quantum cryptography and classical 
communication channel - all combined creates a new way to protect and transmit important 
messages or information making the channel almost impossible to be eavesdropped and the 
information to be stolen. 
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1. Introduction 

We propose a theoretical scheme for implementing the quantum algorithm to send 

the chaotic key information from the transceiver to the receiver. We simulate a 

combination between the advantages of two security systems, a chaotic signal 

system and a quantum cryptography protocol.  

Quantum cryptography solves the key distribution problem by allowing the 

exchange of a cryptographic key between two remote parties with absolute 

security, guaranteed by the laws of physics. This key can then be used with 

conventional cryptographic algorithms [18]. If one encodes the value of a digital 

bit on a single quantum object, its interception will necessarily translate into a 

perturbation, because the eavesdropper is forced to observe it. This perturbation 

causes errors in the sequence of bits exchanged by the sender and recipient. By 

checking for the presence of such errors, the two parties can verify whether their 

key was intercepted or not. It is important to stress that since this verification 

takes place after the exchange of bits, one finds out a posteriori whether the 

communication was eavesdropped or not. That is why this technology is used to 

exchange a key and not valuable information. Once the key is validated, it can be 

used to encrypt data. In telecommunication networks, light is routinely used to 

exchange information. For each bit of information, a pulse is emitted and sent 

down an optical fiber to the receiver, where it is registered and transformed back 

into an electronic signal. These pulses typically contain millions of photons. In 

quantum cryptography, one can follow the same approach, with the only 

difference that the pulses contain only a single photon. In particular a photon 

cannot be split into halves [18], [19].  

2. The BB84 protocol 

The first protocol for QC has been proposed in 1984 by Charles H. Bennett, from 

IBM New-York, and Gilles Brassard, from the University of Montreal, hence the 

name BB84 under which this protocol is recognized nowadays. They published 

their work in a conference in India, totally unknown to physicists.  

We shall explain the BB84 protocol using the language of spin 1/2, any 2 level 

system being equivalent to it. The protocol uses two interlocutors, Alice, as the 

transmitter, and Bob, the receiver, as well as an eavesdropper, Eve. The photons of 

use are divided into 4 quantum states that constitute 2 bases, think of the states up 

|↑i, down |↓i, left |←i and right |→i. Conventionally, one attributes the binary value 

0 to states |↑i and |→i and the value 1 to the other two states, and calls the states 

qubits (for quantum bits). In the first step, Alice sends individual spins to Bob in 

states chosen at random among the 4 basic states (the spin states |↑i, |↓i, |→i and |←i 

are identified with the polarization states ”horizontal”, ”vertical”, ”+45 degrees” 

and ”-45 degrees”, respectively). How she “chooses at random” is a delicate 
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problem in practice, but in principle she could use her free will. The individual 

spins could be sent all at once, or one after the other (much more practical); the only 

restriction being that Alice and Bob can establish a one-to-one correspondence 

between the transmitted and the received spins [1].  

Next, Bob measures the incoming spins in one of the two bases, chosen at random 

(using a random number generator independent from that of Alice). At this point, 

whenever they used the same basis, they get perfectly correlated results. However, 

whenever they used different basis, they get uncorrelated results. Hence, on 

average, Bob obtains a string of bits with 25% errors, called the raw key. This error 

rate is so large that standard error correction schemes would fail.  

But in this protocol Alice and Bob know which bits are perfectly correlated (the 

ones for which Alice and Bob used the same basis) and which ones are completely 

uncorrelated (all the other ones). Hence, a straightforward error correction scheme 

is possible: For each bit Bob announces publicly in which basis he measured the 

corresponding qubit (but he does not tell the result he obtained). Alice then only 

tells whether or not the state in which she encoded that qubit is compatible with the 

basis announced by Bob. If the state is compatible, they keep the bit, if not they 

disregard it. In this way about 50% of the bit string is discarded. This shorter key 

obtained after bases reconciliation is called the sifted key. The fact that Alice and 

Bob use a public channel at some stage of their protocol is very common in crypto-

protocols. This channel does not have to be confidential, but has to be authentic. 

Hence, any adversary Eve can listen to it all the communication on the public 

channel, but she can’t modify it. In practice Alice and Bob may use the same optical 

fiber to implement both the quantum and the classical channels. Note that neither 

Alice nor Bob can decide which key results from the protocol. Indeed, it is the 

conjunction of both of their random choices which produces the key. [17], [18].  

The quantum channel consists of two main modules: Alice and Bob, that 

communicate either over open air or optical fiber channel, in this case we consider 

a perfect noiseless channel. 

The classical channel is a basic TCP/IP connection (coaxial or UTP cable). The 

experiments for optical fibers transmissions are also considered. 

Let us now consider the security of the above ideal protocol (ideal because so far 

we did not take into account unavoidable noise due to technical imperfections). 

Assume that some adversary Eve intercepts a qubit propagating from Alice to 

Bob. This is very easy, but if Bob does not receive an expected qubit, he will 

simply inform Alice to disregard it. Hence, in this way Eve only lowers the bit 

rate (possibly down to zero), but she does not gain any useful information. For 

real eavesdropping Eve must send a qubit to Bob. Ideally she would like to send 

this qubit in its original state, keeping a copy for herself. 
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3. Theoretical simulation setup 

We use a chaos generator in the transmitter and in the receiver which is an electro 

optic modulator (EOM) driven by a voltage V larger than its half-wave voltage, 

such that it operates in a highly nonlinear regime, i.e., with a transmission curve 

F(V) with multiple extrema [3][16]. 

The idea of using EOMs to generate nonlinear dynamics is not new. The first 

demonstrations were reported in the '80
s
 with optical bistability from a ring 

configuration consisting of an EOM that is fed back with the signal from the 

detected light at its output, such that 

)(VFV   (1) 

yielding two steady states as F exhibits two extrema [16]. Low-voltage integrated 

EOMs were then used to obtain F-functions with a higher number of extrema and 

to demonstrate optical multi stability.  

Following these earlier works, Hopf et al. investigated routes to chaos and 

bifurcation cascades from EOMs operating as chaos generators by introducing a 

time retardation T in the feedback signal, such that 

)]([)( TtVFtV   (2) 

The interest of their investigations was primarily focused on the nonlinear regime 

and the chaotic dynamics of the oscillator. Our studies, by contrast, are 

specifically focused on the synchronization of two oscillators to encrypt a 

message within a chaotic carrier [14]. Attempts have been made to synchronize 

such chaotic oscillators using Pecora and Carroll’s method [13, 16], but no 

demonstrations of signal transmission have ever been reported.  

The reason appears to be that, in this case, there are no rigorous mathematical 

solutions yielding chaos synchronization in that case [7].  

Then the scheme for generating chaos and signal encoding must be different from 

those previous works. In what follows, we report on the demonstration of a new 

scheme with an EOM to solve the difficulty associated with chaos 

synchronization. We use an EOM powered by an auxiliary source to produce the 

nonlinear F-function, and we use the time-delayed signal thus obtained, mixed 

with the message m(t), to modulate the intensity of a second laser diode (LD), 

which is the emitting source depicted in Fig. 1.  

At the receiver, an open-loop synchronization scheme derived from a method that 

we demonstrated earlier is used to recover the original message m(t). As a bonus, 

the electrooptically induced nonlinearity features multiple extrema that may make 

attacks difficult with the breaking methods reported so far. 
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Fig. 1. The simulated system. 

The quantum channel consists of two modules, a transmitter and a receiver. The 

module is designed to produce a stream of single polarized photons according to the 

choice of basis and bit value. Because no source can produce single photons, we use 

pulses that have the property of coherency. They are called weak coherent pulses 

(WCP) of Poisson distribution and mean photon number  = 0.0235. To produce the 

pulses, we will use four laser diodes, oriented around a conical mirror at the desired 

polarization angles. The polarization problem is solved by the laser diodes that have 

intrinsic polarization. After the beams are reflected by the conical mirror, they pass a 

spatial filter, which consists of two 100 m at 0.9 cm apart. It serves a special 

purpose, that of making the pulse from the four diodes indistinguishable from the 

others, in spatial terms. This measure has to be taken because without the spatial 

filtering, the code can be broken quite easily. In order to get as much light as possible 

through the spatial filter, there is a lens with a focal length f = 2.75 mm between the 

conical mirror and the pinholes of the spatial filter. Because of the very strong spatial 

filtering, the alignment of the pinholes is crucial, otherwise the desired mean photon 

count will not be achieved for all polarizations [17]. 

4. Receiver Module 

 

Fig. 1.2. The receiver module. 
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The module is the heart of the receiver unit is connected directly to a receiver lens 

and a spatial filter (SF), that are positioned so that the transmitted beam is focused 

on the primary device of the module. The primary device is an interference filter 

with a red color glass filter. 

This is important to allow for daylight operation, because it rejects stray light, 

while permitting polarized light to pass. The remaining optical devices divide the 

photon beams into bases H/V and +/-, the construction being based on the idea by 

John Rarity and Paul Tapster. An incident photon sees the 50/50 beam splitter 

(BS). If it is reflected it will see the polarizing beam splitter (PBS) of the photon 

in the H/V basis, which in combination with the two silicon avalanche photo 

diodes (APD) H and V. If APD V detects a photon it is supposed to be in the V 

basis, whereas if APD H detects a photon, it is supposed to be in the H basis. Any 

photon that is transmitted through the beam splitter passes through a half-wave 

plate, set at an angle of 22.5, so that it rotates the linear polarization by 45 

degrees. Afterwards, a +45 degrees polarized photon is detected by APD 1 and 

converted into the horizontal basis H, while a -45 degrees polarized photon is 

detected by APD 3 and converted into the vertical basis V. Whenever a photon is 

measured in the wrong basis, the measurement outcome is completely random. 

The APD-s have to be cooled in order to reduce dark counts, at a temperature 

between -25 and -10 degrees. To reach these temperatures, the photo-diodes are 

put into an aluminum block which is cooled by a Peltier element glued to it from 

below. [17] 

5. Experimental simulation 

In the experiment we consider the message m(t) a signal made of a random 

sequence of bits. The message signal m(t) is encoded within chaos at the 

transmitter. The resulting composite signal is sent to a receiver, which performs 

decoding. The transmitter is formed by an impedance-matched laser diode LD 

(wavelength 0) driven electrically by a feedback loop. The LD operates above its 

threshold, in the linear part of its power–current curve. The optical intensity I(t) of 

LD is modulated around a mean intensity I0 by the modulation voltage  

)()(:)( 0 tiItIts 
 (3) 

where  

( ) ( )i t s t   (4) 

is the optical intensity fluctuation, and  

/dI ds   (5) 

is the slope of the power–voltage curve of the LD at its operating point.  
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The feedback loop is formed by a detector D1 and an amplifier (voltage gain g1), 

an EOM (half-wave voltage V, optical transmission ) powered by an auxiliary 

optical continuous-wave (CW) source S (power P), a delay line (an optical fiber 

with a group propagation time T), and a photodetector D2 (voltage gain g2). 

 

Fig. 2. The input signal – in this case is a random binary sequence, thus to emulate a digital signal. 

The transmission curve in intensity of the EOM is the nonlinear F-function  

2'( )
[ ( )] cos [ ( ) ]

P x
F x t x t

P
  


 (6) 

where 

( ) ( ) / (2 )x t V t V   (7) 

/ (2 )BV V    (8) 

P’(x) is the optical power at the output of the EOM,  

)()( 1 tigtV   (9) 

its driving voltage, and VB is a bias voltage used to adjust its operating point. For 

generality, we assume that the feedback circuitry features a bandwidth 

21 fff   (10) 

with a high and low cutoff frequency f1 and f2, respectively, and behaves as a 

second-order band pass filter (BPF) (as depicted in Fig. 1) with time constants  

11 2/1 f   (11) 

and 

22 2/1 f   (12) 
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The message m(t) is injected into the feedback loop such that the modulation 

voltage s(t) is the addition of m(t) and the chaotic signal c(t) at the BPF output 

[11, 12, 14]:  

)()()( tmtcts   (13) 

with  

( ) ( )m t c t  (14) 

This last condition ensures a high masking efficiency as a high degree of security 

is of concern (this condition comes up at the cost of a reduction of the SNR at the 

receiver output). The chaotic dynamics of the optical intensity i(t) emitted by the 

LD can then be found by considering the different signals in the feedback loop, as 

we explain below. For simplicity, we consider the second-order BPF as being 

formed by the combination of a first-order low-pass filter with a 3-dB cutoff at 

frequency f1 and a first-order high-pass filter with a 3-dB cutoff at f2. 

Let v(t) and c(t) be the input and output voltages of the BPF, respectively. Noting 

that the output voltage u (t) of the low-pass filter versus its input voltage v(t) is 

given by 

1( ) ( ) ( )
d

t u t u t
dt

  v  (15) 

and that the output voltage c(t) of the high-pass filter versus its input voltage u(t) 

is given by  

  )()(
1

)(
2

tcdttctu


 
(16) 

the relationship between the input voltage v(t) and the output voltage c(t) of the 

BPF is  

1
1

2 2

1
( ) 1 ( ) ( ) ( )

d
t c t c t c t dt

dt

 
     

  
v  (17) 

The chaotic dynamics of the transmitter can then be found by noting that c(t) is 

also the voltage that outputs photo detector D2 and is therefore related to the 

optical intensity incident on D2 by 

2( ) [ ( )]c t g PF x t T    (18) 

with  

1( ) ( ) / (2 )x t T g i t T V    . (19) 
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It can then be shown from the previous expressions that chaotic fluctuations i(t) 

occur in the optical intensity of the LD [13], which obeys a second-order DDE 

(differential delay equations) that can be expressed in the normalized form  

1
( ) ( ) ( ) [ ( )] ( )

d
x t x t x t dt F x t T h t

dt
      

 
 (20) 

where x(t) is a dimensionless variable related to i(t), and where the message m(t) 

is embedded in the trajectories of x(t) via the function  

1

1
( ) ( ) ( ) ( )

2

d
h t g m t m t m t dt

V dt

  
      

  (21) 

where  

1 2 1 2/ ( )        (22) 

and 

1 2      (23) 

We observe that a high value of the gains g1 and g2 ensures a large bifurcation 

parameter , yielding a chaotic solution x(t). (The integral and derivative terms in 

(25) are physically due to the raising and falling edges of the BPF, respectively). 

The receiver is formed by the same elements as those in the transmitter, except that 

the feedback loop is open. In the following, the subscript r refers to the receiver. 

The photo detector D1r is illuminated by the intensity fluctuations Ai(t) emitted by 

the transmitter (A is an attenuation factor related to the optical losses in the 

transmission fiber) and operates with a gain g1r such that Ag1r = g1, yielding a signal  

)()( 1 tigtVr   (24) 

which inputs the modulator EOM. The light beam at the output of EOM, which 

features the same nonlinear modulation curve F as in (1), is time-delayed by 

Tr + T and detected by photodiode D2r (gain g2r = g2), yielding a voltage 

2 ' [ ( )]r r r r rg P F x t T  at the input of BPF, with r   and ' 'rP P  [5]. 

Following the same procedure as that explained for the transmitter, it can then be 

shown that the laser diode LD at the receiver features chaotic intensity 

fluctuations ( )ri t , which obey the following normalized second-order DDE: 

1
( ) ( ) ( ) [ ( )]r r r

r

d
y t y t y t dt F x t T

dt
      

 
 (25) 

where 
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1( ) ( ) / (2 )r ry t Ag i t V   (26) 

1 2 1 2/ ( )r r r r r          (27) 

1 2r r r        (28) 

and [9] 

1 2' / (2 )r r r r r rA P g g V      (29) 

Noting that r   , one observes that the receiver equation (5) is expressed in the 

form of (2) when there is no message (m = 0) [8].  

The receiver behaves, in this case, as a slave generator that replicates the chaos of 

the transmitter, yielding chaos synchronization i.e. x(t) = y(t).  

In contrast, when applying the message ( 0)m  , chaos synchronization is lost 

since we have, from (2) and (5), x(t)  y(t) = m(t) [1]. 

Therefore, the message m(t) can be recovered by subtraction of the light intensity 

( )ri t  of the receiver from the transmitted ( )i t .  

This subtraction is performed electrically at the receiver output [8, 15]. 

Note that, when m = 0, the time to obtain chaos synchronization can be evaluated 

by considering small deviations y  of y(t) from x(t) i.e.,  

( ) ( ) ( )y t x t y t   (30) 

yielding 

1
( ) ( ) ( ) 0

d
y t y t y t dt

dt
      

 
 (31) 

Thus giving 

lim[ ( ) ( )] lim[exp( )] 0
2t t

t
y t x t

 
   


 (32) 

We observe asymptotically the occurrence of chaos replication [10]. 

Practically, after a transient time of some 2  the receiver tracks the chaos 

produced by the transmitter and the encryption process can begin [6, 7]. 

Also note that the injection point of m(t) at the transmitter must be chosen 

correctly to retrieve the message at the receiver without degradation [14]. 

The chaotic key is transmitted through a secondary encrypted channel, using the 

quantum communication BB84 protocol.  
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6. Simulation conclusions 

The idea of this experiment is to understand and to improve the chaos masking of 

different signals adding a new security module, the quantum channel. The 

simulated EOMs used were pigtailed Ti:LiNbO integrated Mach–Zehnder 

modulators with 3.6V  V at 1540   nm, an electrical bandwidth of 1 GHz, 

and with fiber-to-fiber optical losses of  8 dB (optical transmission 11  %) [1].  

Their electrical bandwidths were not closely matched one with each other. The 

optical sources were conventional pigtailed laser diodes designed originally for 

analog CATV fiber transmissions at a 200 MHz frequency. The delay lines were 

2 km-long single-mode fibers, yielding a time delay 0.01rT T  ms. The 

simulated detectors were InGaAs photo detectors with a sensitivity of 0.9 A/W 

associated with radiofrequency amplifiers featuring a power gain of 40 dB over a 

bandwidth of 142f  MHz, ranging from 1 24.5f  MHz to 2 166.5f  MHz, 

yielding time constants 1 6.5  , 2 1  , 0.9   and 7.4  ns. The gains 

1 2 1 2, , ,g g g g   were equal to 4 V/mW. The other parameters were the following: 

0 5I  mW, 4P  mW, 0BV   and 4r    mW/V, yielding a bifurcation 

parameter 2.2  . The peak-to-peak driving voltage of the EOMs was 3ppV V , 

yielding a number of extrema participating to the generation of the chaos equal to 

N = 3 (Fig. 3). The chaotic fluctuations i(t) of the optical power, emitted by the 

transmitter, are made when the message m(t) is a 100 MHz signal masked within 

chaos with a message-to-chaos ratio m(t)/c(t) of  10 dB. The standard deviation 

of the fluctuations of optical power around I0 was measured to be 1.3 mW.  

 

Fig. 3. The transmitted signal over the simulated channel. 
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The spectrum of i(t) is also the information that an eavesdropper can detect when 

tapping the transmission fiber. No detectable peak at 100 MHz can be seen in the 

spectrum.  

A proper decoding requires an accurate adjustment of the receiver parameters 

(bifurcation parameter, filter parameters, time delay, Mach–Zehnder parameters) 

 the latter form the key parameters  in order to meet the matching conditions 

required to replicate chaos at the receiver.  

Practically, a perfect replication is not possible due to unavoidable mismatches 

between the components used in the transmitter and receiver.  

The message ( )rm t  recovered at the receiver is then altered by a chaotic noise.  

In the experiments, m(t) was decoded with an SNR of 56 dB as the parameters in 

the receiver were matched to those in the transmitter with an accuracy better than 

1%, except for the gain curves of the RF amplifiers drivers of the EOMs available 

at the laboratory, which were matched to each other with an accuracy of about 

10% only. 

 
Fig. 4. The received signal – the recovered simulated signal. 

In Fig. 5 we may observe the relative low loss of the transmitted signal over the 

simulated channel.  

The simulated transmission channel was a 50 km-long standard single-mode fiber. 

Fig. 4 gives the recovered signal mr(t) [1].  

The quantum channel is added to the chaotic system to prevent any eavesdroppers 

to intercept the chaotic key, thus making the system more secure. 
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Fig. 5. Transmitted signal vs. received signal. 
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