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CHAOS AND STABILIZATION
OF
SELF-REMISSION TUMOR SYSTEM
BY
SLIDING MODE

M.R. JAFARI*, M.R. ZARRABI*? S. EFFATI®

Abstract. In this paper a pray-predator system that called self-remission tumor is
considered, and a new approach in order to stabilizing the unstable equilibrium
points of self-remission tumor system with sliding mode control is introduced.

The stability analysis of the biologically feasible equilibrium points is presented by
using the Lyapunov function.

A Lyapunov function is supposed for designing a sliding surface (SS).

Lyapunov function is constructed to establish the global asymptotic stability of the
uninfected and infected steady states by describing sliding surface (SS), after that
by considering the derivation of SS as zero, someone can achieve the equivalent
control that inbreed system stays on SS and tends to equilibrium point in infinite
horizon.

In addition, numerical examples are presented to illustrate the effectiveness of the
proposed method.
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1. Introduction

Cancer is one of the greatest killers in the world and the control of tumor growth
requires special attention [9].

The mathematical modeling of cancer self-remission and tumor has been
approached by a few numbers of researchers under using a variety of models over
the past decades [8, 9, 13, 18].

Many authors have discussed the problem of the chaotic behavior and stability
analysis of some biological models such as cancer and tumor model, genital
herpes epidemic, stochastic lattice gas prey-predator modes [7, 8, 13] and many
other models.

'Department of Applied Mathematics, Ferdowsi University of Mashhad (see above picture),
Mashhad, Iran, (mreza.jafari26@gmail.com).

?(mo.za870@gmail.com).

¥(s-effati@um.ac.ir).



124 M.R. Jafari, M.R. Zarrabi, S. Effati

Optimal treatment scheduling of prey-predator system using a control theoretic ap-
proach is the subject of substantial research activity. In [1,2,6,14,16], open-loop type of
optimal controllers is designed by using the Pontryagins Maximum Principle (PMC). A
major drawback of open-loop optimal controllers is their lack of robustness against dis-
turbances or model uncertainties. In fact, tumor dynamics are poorly known, this leads
to model inaccuracies and parameter uncertainties. Also, another source of disturbances
may arise from immune system fluctuating or immune effect of a co-infection, in addition
to the measurements errors and estimation errors when using an observer to estimate the
unmeasured states. Therefore, the design of optimal treatment schedules based on open-
loop optimal controller, may lead to undesired results. To overcome this problem, we
have to design a feedback controller, which inherits certain robusiness to disturbances.

Feedback control for prey-predator has been studied by [3-3]. A common method for
using feedback control is sliding mode control that introduced by Emelyanov [10] in the
late 1960s based on the conceptions of variable structure control (VSC). However, Flgge-
Lotz [11] was the first to present the concept of sliding motion, and Filippov [11] was
the first to consider the solution of differential equations with a discontinuous right-hand
side. Filippovs pioneering work still serves as the basis for work in sliding mode control
which was essentially developed by Utkin [11,12,19.20] and Emelyanov [10], Draenovie
and their co-workers.

The present paper is concerned with the problem of design equivalent control of the un-
stable equilibrium points of cancer self-remission and tumor system. Mathematical model
of spontaneous tumor regression and progression as a deterministic prey-predator model
have been constructed. Chaos and stability analysis of equilibrium points of the system
and their biologically existence conditions are perused and inputs control that stabilizes
these unstable equilibrium points by using sliding mode control are derived. Eventually,
the results of this paper complement and extend recently published results by El-Gohary
[9] and Sarkar [18].

This paper is organized as follows: Section 2 briefly introduces self remission tumor
and its mathematical model. Section 3 addresses the equilibrium points and their stability
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analysis. In Section 4, equivalent conirol is designed, and examples are presented in sec-
tion 5 to illustrate the procedure and its validity of the proposed control design. Finally,

conclusions are given in Section 6.

2 The mathematical model

In this section we start to construct the spontaneous tumor regression and progression
system using a prey-predator system [9]. We consider the predator is T-lymphocytes and
cytotoxic macrophages’ natural killer cells of immune system, which attacks, destroys or
ingests the tumor cell. The prey is the tumor cells which are attacked and destroyed by the
immune cells. The predator has two states, hunting and resting, and destroys the prey. The
tumor cells are caught by macrophages which can be found in all tissues in the body and
circulate round in the blood system [9,18]. Macrophages absorb tumor cells, eat them and
release series of cytokines which activates the resting T-lymphocytes that coordinates the
counter attack. The resting predator cells can also be directly simulated to interact with
antigens. These resting cells cannot kill tumor cells, but they are comverted to a special
type of T-lymphocyte cells called natural killer or hunting cells and begin to multiply
and release other cytokines that moreover simulate more resting cells. This conversion
between hunting and resting cells result in a degradation of the resting cells undergoing
natural growth and an activation of hunting cells. To introduce the mathematical model
we assume that the tumor cells are being destroyed at a rate proportional to the tumor
cells densities according to the law of mass action. Next we also assume that the resting
predator cells are converted to the hunting cells either by direct contact with them or by
contact with a fast diffusing substance produced by hunting cells. We consider that once a
cell has converted, it will never return to the resting stage and active cells die at a constant
probability per unit time. Finally we assume that all of resting predator and tumor cells
are nuirient rich under going mitosis and the tumor cells have a proliferative advantage
over the normal cells [9]. If M{z), N(t), and Z(t) denote thedensities of tumor cells,
hunting predator cells and resting predator cells at time t, respectively, the resulting system
dynamical system can be described the following set of nonlinear ordinary differential
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equations:
O — a4 rM(L—k'M) —aMN, (1)
dN
dZ

= = sZ(1-k5'Z) - BNZ — &,,

where g is the conversion of normal cells to malignant ones, r is the growth rate of the
tumor cells, k is the maximum carrying capacity of tumor cells, ka is the maximum
carrying capacity of resting cells (also, k1 > ki), 8 is the conversion rate of mesting cells to
hunting cells, dy is the natural death of hunting cells, d; is the natural death rate of resting
cells, s is the growth rate of resting predator cells, « is the rate of predation/destruction
of tumor cells by the hunting cells. Cancer self-remission and tumor system have to be
analyzed with the initial positivity conditions M(D) > 0, N{0) = 0, Z(0) =0 [1,2].

2.1 Parameters reduction

We reduce the sysiem parameters (1) by using new variables and new parameters. Now
consider the following new variables:

T=gky't, T =ki'M, 13=akg!N, m=k'Z. )

So we have:

dt
T = qki‘it — t = kgt = T kygt.

Now consider the following constants a,,i = 1,--- |6

oy =rhkyq! oy = kbt 0y = kydyg!
ay = skyg™' ag=fa’ ag = dakyq!

Substituting (2) and (3) into (1) we get the following system [9]:

(3)

i1 =14+ ay74(1 — 1) — T4 Ta, 4
T3 = @gTaTy — 3T,

T3 = a473(1 — T3) — a5TaTy — a3,
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Fig. 1. The densities of twmor cells, hunting predator cells, resting predator cells for the parameters
iy =04 ag = 5.9 a3 = 01, ay = 0.5, ag = 0.0 and g = 0.05 and the initial densities ane
(0} = 0.3, 25(0) = 1.5 and 25(0) = 0.5

3 Equilibrium points, stability analysis

In this section will be discussed about all of the positive equilibrium points of nonlinear
system (4) and analyse their local stability by Lyapunov linearization approach.
The positive equilibrium points of the nonlinear sysiem 4 are as follow:

1 4
Ei—[§{1+1|"1+all~ﬂ~ﬂl1 (3)
1 [ ¢
Eg_[z{l-l- 1+u.}‘n"1_a¢]‘

Ey = {2‘%1[(&1 — ma) + 4/ (T2 — 1) + day], [ag(as — az) — ﬂﬂﬁﬁ]fﬂﬂﬂs:g},

The positive equilibrium points are biologically feasible. Therefore Ej is feasible if ag <
itg. This means that F5 exists and biclogically admissible if the natural death rate of
resting cells is less than the growth rate of the resting predator cells. Fy is feasible if

[m(ﬂﬂ—ua}—naua]fﬂ:ﬂs:-0=-g+%-:2- (6)
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Therefore the equilibrium points Ey, Fs, F5 under the following conditions are positive
and biologically admissible [9]:

— 4 — <2, Vi

3.1 The local stability analysis the equilibrium points

To investigate the local stability positive equilibrium points under the conditions (7) by
Lyapunov linearization approach, we obtain the Jacobian matrix J and its eigenvalues at
these points.

The Jacobian matrix of the system (4) at the equilibrium state F\ is given by

—/a + 40, —(1+ 1+;';|].,.f2 0
Jle, = 0 —ag 0 - (8)
0 0 g — g

The eigenvalues of the Jacobian matrix J; are given by

Ay = —1"|"ﬂ$+‘iﬂ1: (9)

Ajg = —ag,
M3 = @y — ag,

From the condition of the (T) we observe that the eigenvalue A5 is positive and hence the
E,; equilibrium point is absolutely unstable [15,17].
The Jacobian matrix of the system (4) at the equilibrium state s is given by

/o] +da; (14 1+ 212 0

Tle, = 0 (8204 — a3aq — 020¢)/ag O : (10)
0 —ag(ag — ag)/ay g — g

The eigenvalues of the Jacobian matrix J; are given by

.-’l.r‘|-1=—-||l|-|1¥—|- 4y, (11}

Asa = (004 — @30y — Gang)/ay,
Ay = ag — @y,
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From the condition of the (7) we observe that the eigenvalue Ay is positive and hence the
Es equilibrium point is absolutely unstable [15,17].
The Jacobian matrix of the system (4) at the equilibrium state Fs is given by

Ty —k {ﬂ-l—Tﬂ -I-.k:lln"gﬂq 0
J|g, = 0 0 asTa . (12)
0 —(mgag) /ags —(agay)/as

where k = /(a1 — T2)* + 40y and Tp — [agas — az) — asag] fasax. The eigenvalues of
the Jacobian matrix J3 are given by
Agy =T — k., (13)
Ay = [—aa04 4 1,/ agnj — 4a30305T]/ 20z,
Agg = [—agay — 1,/ azaj — 4ajngagTs|/2a,,

From the condition of the (7) we observe that the eigenvalues Asy, Ass and Agy have
negative real parts therefore the equilibrium point E; is asymptotic stable [16,17].
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Fig. 2. The cancer self-remission and tomor sysem comvenges o stable inside limit cycles for the
parameters a4; = 2.5, 4, = 4.5 ay; = (L6, 3y = 1.5 a; = 2 and ag = (.1 and the initial densities ane
(0] = 0.5,75(0) = 1,25(0) = 1.5
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Fig. 3. The cancer self remizsion and fumor three dimensional phase plot which represent three different
attractors for the values of the system parame ters and initial densities
iy = 5,8 = 15, a3 =05, 0y = 6.5, a5 = 0.1 and ag = 0.21 and the initial densities ame

2 (0) = 0.5, 75(0) =2, 75{0) = 1.

4 Designing equivalent control

In this section we will study the problem of design equivalent control of the cancer
self-remission and tumor model about its equilibrium points. For this purpose of in this
system as both £ and V cells are from T lymphocyte, we add the control u to system (4)
in order to reinforce the immune system of body against the tumor cells. Then we will
use sliding mode approach. Therefore let us consider the coupled system of the cancer
self-remission and tumor has the form

) = 1+ ayxy(l — 71} — 3470, (14)
Ty = GgToT3 — G3Ta 4 Oy,
Ty = ayTa(l — T3) — agToTs — agTy + agu,

To study the problem of design equivalent control of the system (14) about the equi-
librium points ) and E; we will obtained the equations of perturbed states about these
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equilibrium points by introducing the following new variables
T =TIy —Ty, Mgp=2=ZTa—Ta, 7= T3— Ta. (15)
where T;,i = 1,2, 3 denote the coordinates of the equilibrium points Ey and Es. Sub-
stituting (15) into (14) taking into account the identities that satisfy by the equilibrium
points, we get the following system:
T = (21 — 20Ty — Ta)iy — 047 — Ty7la — T, (16)
Tl = (09T3 — 03)1 + 0gTans + agllath + o1,
fh = —agTath + (04 — 0g — agTy — 20,Ta)Th — 047 — agTalls + o,
In this phase we delete the control agu than third equation.
Y1 =T, Ya="g, !.Ea=fh—|:;ﬂ;]'ﬂ2- (17)
Therefore we get the following system:
i = (81 — 24Ty — Ta)uy — 0147 — Tavs — tlh, (18)
. it
iy = {(;ﬂ;}ﬂﬂﬂ + agTs — ag)ys + {E—f]ﬂaﬁ + agTays + aalhaly + oy,
ts = Cyus + Covg + Caya + Cyyalis — 0403,
where
a v a
Cy = (=)lag + ag — ag — ((—)aa + ag)Ts — (a3 + 204 + (= )ag)Ta], (19)
iy 3 ¥y
y=—-(— + ay + [— Jagl,
2= —(22)lan + 00 + (5 )asl,
Ca = [oe — a6 — {(:—‘;‘}ug + a5)Ta — 2a,T3],
Ca = —(=2)l(a2 + 200 + (=—)as)],
ky Cky

Consider V{w, yo. 1) = %[yf+y§+ v3) as the candidate Lyapunov function of the system
(18). The time derivation of 1" along the trajectories of the system (18) is

V = wmin + watie + yvags (20)
= (1 — 204Fy —To)uf — 18] — Tath Yo — ¥ila
+([z—f]ﬂ'ﬂz + 04T3 — a3)13 + [z—:]ﬂﬂﬂg + 0aTaUsls + GaU3ls + Yaty
+C oy + Cavats + Cas + Cytots — 0403.
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First by factorization from linear coefficients of the y and then by factorization from
nonlinear coefficients of the y, V' convert to the following equation:

V = va(—Fawn — ui + Dyys + Dyy3) (21)
+9a( Dayz + Dyvays + Dyu3 + oqu)
+f(w, ua).
where
o, 95) = (@ = 209y ~ To)aft — ()00 + aa + (as)ed — @2)

D = {;ﬂij[us + a4 — 08 — [—[?T;]un+ {z—f]un+ as )Tz — (az + 2a4 + {;ﬂ;}ﬂs}fsl:

Da=—(3)ea + 204+ (3)as),

Dy = {E—fja:.,

The sliding surface can be described as:

v2 = —K{—Tun — vi + Diys + Dand). (23)

where K > 0. To get the equivalent control we can equal the nonlinear coefficient of the

y Lo zero.
Uteg = —07 ' (Daya + Dayaws + Dyyg). (24)
So V' can be writien as:
V =—Ku3 + fw, ). (25)
Now, we should assign K in a way that V' < 0, therefore the following inequality is
obtained. For its numerical calculate, we use matlab software.
K >y flun, u). (26)

By substituting sliding surface (23) in system (18), the dimension of this system decrease
into two, and sysiem trajectories approach to the origin by sliding surface (23). So system
(16) is asymptotically stable in Lyapunov sense.
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5 Analysis and numerical simulation

In this section the problem of the numerical solution of controlled nonlinear cancer
self-remission and tumor system is considered, to exhibit the control of this system by
using SMC. Numerical examples for controlled cancer self-remission and tumor system
were camied out for various parameters values and different initial densities. The fol-
lowing figures display the stabilized behavior of the cancer self remission system about
the unstable equilibrium points and its equivalent control input (See Figs. 4 and 5). We
conclude that all of the unstable equilibrium points of the cancer self-remission and tu-
mor system can be optimally asymptotically stabilized with nonlinear equivalent control
inpuis a1, and o, under the conditions ay > ag and E: +?4 < 2
In Figure. 4, 7, r9 and 5 the densities of tumor cells, predator hunting cells and resting
predator cells respectively and equivalent control ., in equilibrium point F,, are dis-
played against time for the system parameters and initial densities a; = 0.4, as = 5.9,
ag = 0.1, ag = 0.5, a5 = 0.6, ag = 0.05,0y = 0.9, 9 = 1.1 and K =1 and x,{0) = 0.3,
ra(0) = 1.5 and r3(0) = 0.5. Note that all densities are exponentially asymptotically
stable.
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Fig. 4. Trajectories and control function.

In Figure. 5, Ty, Ty and x5 the densities of tumor cells, predator hunting cells and
resting predator cells respectively and equivalent control i, in equilibrium point £, are
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displayed against time for the sysiem parameters and initial densities a3 = 3, aa = 5,
ay = 4,04 = 3, a8 = 2, ¢ = 5,01 = 09,00 = 1.1 and K = 0.15 and x1(0) = 0.3,
ra(0) = 1.5 and r3(0) = 0.5. Note that all densities are exponentially asymptotically
stable.
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Fig. 5. Trajectories and control function.

6 Conclusion

In this paper the problem of instability of cancer self-remission and tumor system us-
ing a sliding mode control approach have been studied. The positive equilibrium points
are imres'r.‘iigated The stability and instability of the equilibrium points of this system
are studied using the Lyapunov linearization approach. The equivalent control imnr
asympiotic stability of unstable equilibrium points i.e v, and sliding surface are derived.
Analysis numerical examples for the controlled system were carried out for various pa-
rameters values and different initial densities. Matlab has been used for computations in

this paper.
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