# AUTOMATIC COMPUTER MUSIC CLASSIFICATION AND SEGMENTATION

Adrian SIMION<sup>1</sup>, Stefan TRAUSAN-MATU<sup>2</sup>

**Rezumat.** Lucrarea de față descrie și aplică diferite metode pentru segmentarea automată a muzicii realizată cu ajutorul unui calculator. Pe baza rezultatelor și a tehnicilor de extragere a caracteristicilor folosite, se încearcă de asemenea o clasificare/recunoaștere a fragmentelor folosite. Algoritmii au fost testați pe seturile de date Magnatune și MARSYAS, dar instrumentele software implementate pot fi folosite pe o gamă variată de surse. Instrumentele descrise vor fi integrate într-un "framework" / sistem software numit ADAMS (Advanced Dynamic Analysis of Music Software -Software pentru Analiza Dinamică Avansată a Muzicii) cu ajutorul căruia se vor putea evalua și îmbunătăți diferitele sarcini de analiză și compoziție a muzicii. Acest sistem are la bază biblioteca de programe MARSYAS și conține un modul similar cu WEKA pentru sarcini de procesare a datelor și învățare automată.

**Abstract.** This paper describes and applies various methods for automatic computer music segmentation. Based on these results and on the feature extraction techniques used, is tried also a genre classification/recognition of the excerpts used. The algorithms were tested on the Magnatune and MARSYAS datasets, but the implemented software tools can also be used on a variety of sources. The tools described here will be subject to a framework/software system called ADAMS (Advanced Dynamic Analysis of Music Software) that will help evaluate and enhance the various music analysis/composition tasks. This system is based on the MARSYAS open source software framework and contains a module similar to WEKA for data-mining and machine learning tasks.

**Keywords:** automatic segmentation, audio classification, music information retrieval, music content analysis, chord detection, vocal and instrumental regions

#### 1. Music Information Retrieval

The number of digital music recordings has a continuous growth, promoted by the users' interest as well as the advances of the new technologies that support the pleasure of listening to music. There are a few reasons that explain this trend, first of all, the existential characteristic of the musical language. Music is a form of art which can be shared by people that belong to different cultures because it surpasses the borders of the national language and of the cultural background. As an example the West American music has many enthusiasts in Japan, and many persons in Europe appreciate the classical Indian music. These forms of

<sup>&</sup>lt;sup>1</sup>Eng., Ph.D. student, Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Bucharest, Romania, (simion.adrian@gmail.com).

<sup>&</sup>lt;sup>2</sup>Corresponding member of AOSR. Prof., Ph.D., Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Bucharest, Romania, (stefan.trausan@cs.pub.ro).

expression can be appreciated without the need of a translation that is in most of the cases necessary for accessing foreign textual papers.

Another reason is the fact that technology for recording music, digital transformation and playback allows the users access to information that is almost comparable to live performances, at least at audio quality level.

Last, music is an art form that is cult and popular at the same time and sometimes is impossible to draw a line between the two, like jazz and traditional music.

The high availability and demand for music content induced new requirements about its management, advertisement and distribution. This required a more indepth and direct analysis of the content than that provided by simple human driven meta-data cataloguing.

The new techniques allowed approaches that were only encountered in theoretical musical analysis. One of these problems was stated by Frank Howes [1]: There is thus a vast corpus of music material available for comparative study. It would be fascinating to discover and work out a correlation between music and social phenomena. With the current processing power and advancements we can answer questions such as: What is the ethnic background of a particular piece of music or what cultures it spawns.

In light of these possibilities and technological advances we needed a new discipline that would try to cover and answer the various problems. Music Information Retrieval (MIR) is an interdisciplinary science that retrieves its information from music. The origins of MIR are domains like: musicology, cognitive psychology, linguistic and computer science.

An active research area is composed of new methods and tools for pattern finding as well as the comparison of musical content. The International Society for Music Information Retrieval [2] is coupled with the annual Music Information Retrieval Evaluation eXchange (MIREX) [3]. The evaluated tasks include Automatic Genre Identification, Chord Detection, Segmentation, Melody Extraction, Query by Humming, to name a few. This paper will focus mostly on Automatic Segmentation and Genre Identification.

## 2. Former studies and related work on Automatic Music Segmentation

The topic of speech/music classification was studied by many researchers. While the applications can be very different, many studies use similar sets of acoustic features, such as short time energy, zero-crossing rate, cepstrum coefficients, spectral roll off, spectrum centroid and "loudness," alongside some unique features, such as "dynamism." However, the exact combinations of features used can vary greatly, as well as the size of the feature set.

54

Typically some long term statistics, such as the mean or the variance, and not the features themselves, are used for the discrimination.

The major differences between the different studies lie in the exact classification algorithm, even though some popular classifiers (K-nearest neighbor, Gaussian multivariate, neural network) are often used as a basis.

For the studies, mostly, different databases are used for training and testing the algorithm. It is worth noting that in these studies, especially the early ones, these databases are fairly small. The following table describes some of the former studies:

DATA

| Author                              | Application                                                                                                                               | Features                                                                                                                                                                                                                                                  | Classification method                                                                                                   |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Saunders,                           | Automatic real-time FM                                                                                                                    | Short-time energy, statistical parameters of                                                                                                                                                                                                              | Multivariate Gaussian                                                                                                   |
| 1996 [4]                            | radio monitoring                                                                                                                          | the ZCR                                                                                                                                                                                                                                                   | classifier                                                                                                              |
| Scheirer and<br>Slaney, 1997<br>[5] | Speech/music<br>discrimination for<br>automatic speech<br>recognition                                                                     | 13 temporal, spectral and cepstral features<br>(e.g., 4Hz modulation energy, % of low<br>energy frames,<br>spectral roll off, spectral centroid, spectral<br>flux, ZCR, cepstrum-based feature,<br>"rhythmicness"),<br>variance of features across 1 sec. | Gaussian mixture model<br>(GMM), K nearest<br>neighbour (KNN), K-D<br>trees, multidimensional<br>Gaussian MAP estimator |
| Foote, 1997<br>[6]                  | Retrieving audio<br>documents by acoustic<br>similarity                                                                                   | 12 MFCC, Short-time energy                                                                                                                                                                                                                                | Template matching of<br>histograms, a tree-based<br>vector quantizer,<br>trained to maximize mutual<br>information      |
| Liu et al.,<br>1997 [7]             | Analysis of audio for<br>scene classification of<br>TV programs                                                                           | Silence ratio, volume std, volume dynamic<br>range, 4Hz freq, mean and std of pitch<br>difference,<br>speech, noise ratios, freq. centroid,<br>bandwidth, energy in 4 sub-bands                                                                           | A neural network using the<br>one-class-in-one network<br>(OCON) structure                                              |
| Zhang and<br>Kuo, 1999 [8]          | Audio<br>segmentation/retrieval<br>for video scene<br>classification, indexing<br>of raw audio visual<br>recordings, database<br>browsing | Features based on short-time energy,<br>average ZCR, short-time fundamental<br>frequency                                                                                                                                                                  | A rule-based heuristic<br>procedure for the coarse<br>stage, HMM for the second<br>stage                                |
| Williams and<br>Ellis, 1999<br>[9]  | Segmentation of speech<br>versus non speech in<br>automatic speech<br>recognition tasks                                                   | Mean per-frame entropy and average<br>probability "dynamism", background-label<br>energy ratio, phone distribution match—<br>all derived from posterior probabilities of<br>phones in hybrid connectionist-HMM<br>framework                               | Gaussian likelihood ratio<br>test                                                                                       |
| El-Malehet<br>al., 2000 [10]        | Automatic coding and<br>content based<br>audio/video retrieval                                                                            | LSF, differential LSF, measures based on the ZCR of high-pass filtered signal                                                                                                                                                                             | KNN classifier and<br>quadratic Gaussian<br>classifier (QCG)                                                            |
| Buggati et al.,<br>2002 [11]        | "Table of Content<br>description" of a<br>multimedia document                                                                             | ZCR-based features, spectral flux,<br>shorttime energy, cepstrum coefficients,<br>spectral centroids, ratio of the high-<br>frequency power spectrum, a measure<br>based on syllabic frequency                                                            | Multivariate Gaussian<br>classifier, neural network<br>(MLP)                                                            |
| Lu, Zhang,<br>and Jiang,            | Audio content analysis<br>in video parsing                                                                                                | High zero-crossing rate ratio (HZCRR),<br>low short-time energy ratio (LSTER),                                                                                                                                                                            | <ol> <li>3-step classification:</li> <li>1. KNN and linear spectral</li> </ol>                                          |
|                                     |                                                                                                                                           |                                                                                                                                                                                                                                                           |                                                                                                                         |

 Table 1. Some of the former studies

| 2002 [12]                                                           |                                                                                                     | linear spectral<br>pairs, band periodicity, noise-frame ratio<br>(NFR)                                                                                                                                                                                                  | pairs-vector quantization<br>(LSP-VQ)for<br>speech/nonspeech<br>discrimination.<br>2. Heuristic rules for<br>nonspeech classification<br>into music/background<br>noise/silence.<br>3. Speaker segmentation |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ajmera et al.,<br>2003 [13]                                         | Automatic transcription of broadcast news                                                           | Averaged entropy measure and<br>"dynamism" estimated at the output of a<br>multilayer perceptron (MLP) trained to<br>emit posterior probabilities of phones.<br>MLP input: 13 first cepstra of a 12th-order<br>perceptual linear prediction filter.                     | 2-state HMM with<br>minimum duration<br>constraints (threshold free,<br>unsupervised, no training).                                                                                                         |
| Burred and<br>Lerch, 2004<br>[14]                                   | Audio classification<br>(speech/<br>music/background<br>noise), music<br>classification into genres | Statistical measures of short-time frame<br>features: ZCR, spectral centroid/roll<br>off/flux,<br>first 5 MFCCs, audio spectrum<br>centroid/flatness, harmonic ratio, beat<br>strength, rhythmic regularity, RMS<br>energy, time envelope, low energy rate,<br>loudness | KNN classifier, 3-<br>component GMM classifier                                                                                                                                                              |
| Barbedo and<br>Lopes, 2006<br>[15]                                  | Automatic segmentation<br>for real-time<br>applications                                             | Features based on ZCR, spectral roll off,<br>loudness and fundamental frequencies                                                                                                                                                                                       | KNN, self-organizing<br>maps, MLP neural<br>networks, linear<br>combinations                                                                                                                                |
| Mu <sup>°</sup> noz- Exp <sup>′</sup><br>osito et al.,<br>2006 [16] | Intelligent audio coding system                                                                     | Warped LPC-based spectral centroid                                                                                                                                                                                                                                      | 3-component GMM, with<br>or without fuzzy rules-<br>based system                                                                                                                                            |
| Alexandre et<br>al, 2006 [17]                                       | Speech/music<br>classification for<br>musical genre<br>classification                               | Spectral centroid/roll off, ZCR, short-time<br>energy, low short time energy ratio<br>(LSTER), MFCC, voice to-white                                                                                                                                                     | Fisher linear discriminant,<br>K nearest neighbor                                                                                                                                                           |

# 2.1. Digital Audio Signals

When music is recorded, the continuous pressure from the sound wave is measured using a microphone. These measurements are taken at a regular time and each measurement is quantized.



**a.** Music is a<br/>continuous signal;...**b.** that is sampled...**c.** and Quantized

Sound can be represented as a sum of sinusoids. A signal of N samples can be written as:

56

$$x = \sum_{k=0}^{N/2} a_k^{(r)} \cos(2\pi (\frac{k}{N})) + a_k^{(i)} \sin(2\pi (\frac{k}{N})).$$
(1)

The signal can be represented in the *frequency* domain using the coefficients  $\{(a_1^{(y)}, a_1^{(i)}), \dots, (a_{N/2}^{(y)}, a_{N/2}^i)\}$ .

The magnitude and phase of the  $k^{th}$  frequency component are given by:

$$X_{M}[k] = \sqrt{(a_{k}^{(r)})^{2} + (a_{k}^{(i)})^{2}}$$
(2)

$$X_p[k] = \arctan(\frac{a_k^{(i)}}{a_k^{(r)}})$$
(3)

Perceptual studies on human hearing show that the phase information is relatively unimportant when compared to magnitude information, thus the phase component during feature extraction is usually ignored. [19]

The *Spectral Centroid* is another spectral-shape feature that is useful in the extraction and analysis process. We can see form Table 1 its various uses. The *Spectral Centroid* is the center of gravity of the spectrum and is given by:



The Spectral Centroid can be thought of as a measure of 'brightness' since songs are consider brighter when they have more high frequency components.

#### 2.2. Time-Frequency Domain Transforms

In MIR and sound analysis in general it is common to do transformation between the time and frequency domains. For this the mathematical apparatus gives us the real discrete Fourier transform (DFT), the real short-time Fourier transform (STFT), discrete cosine transform (DCT), discrete wavelet transform (DWT) and also the gammatone transform (GT).

Music analysis is not concerned with complex transforms, since music is always a real-valued time series and has only positive frequencies.

Given a signal x with N samples, the basis functions for the DFT will be N/2 sine waves and N/2 cosine waves that correspond to the previous coefficients.

The projection operator is correlation, which is a measure of how similar two time series are to one another. The coefficients are found by:

$$a_{k}^{(r)} = \frac{2}{N} \sum_{i=0}^{N-1} x[i] \cos(2\pi \frac{k}{N}i)$$
(5)

$$a_{k}^{(i)} = \frac{2}{N} \sum_{i=0}^{N-1} x[i] \cos(-2\pi \frac{k}{N}i)$$
(6)

The DFT is computed in an efficient manner by the fast Fourier transform FFT. One drawback of both the time series representation and the spectrum representation is that neither simultaneously represents both time and frequency information. A time-frequency representation is found using the short-time Fourier transform (STFT): First, the audio signal is broken up into a series of (overlapping) segments. Each segment is multiplied by a *window function*. The length of the window is called the *window size*.



| <b>Fig. 2.</b> Magnatune apa_ya-apa_ya-14-maani-59-88.wav (time domain). |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                                                                          |  |  |  |  |  |  |  |  |  |  |

Fig. 3. Magnatune apa\_ya-apa\_ya-14-maani-59-88.wav (spectrogram).

Fig 2 and 3 were obtained with a tweaked version of the MARSYAS's tool sound2png with the following commands:

./sound2png -m waveform ../audio/magnatune/0/apa\_ya-apa\_ya-14-maani-59-88.wav ../saveres/magnatunewav.png -ff Adventure.ttf

./sound2png -m spectogram ../audio/magnatune/0/apa\_ya-apa\_ya-14-maani-59-88.wav ../saveres/magnatunespec.png -ff Adventure.ttf

Another useful transformation is the wavelet transform.

#### 2.3. Mel-Frequency Cepstral Coefficients (MFCC)

The most common set of features used in speech recognition and music annotation systems are the Mel-Frequency Cepstral Coefficients (MFCC). MFCC are short-time features that characterize the magnitude spectrum of an audio signal. For each short-time (25 ms) segment, the feature vector is found using the five step algorithm given in Algorithm 1. The first step is to obtain the magnitude of each frequency component in the frequency domain using the DCT We then take the log of the magnitude since perceptual loudness has been shown to be

approximately logarithmic. The frequency components are then merged into 40 bins that have been space according the Mel-scale.

The Mel-scale is mapping between true frequency and a model of perceived frequency that is approximately logarithmic.

Since a time-series of these 40-dimensional Mel-frequency vectors will have highly redundant, we could reduce dimension using PCA.

Instead, the speech community has adopted the discrete cosine transform (DCT), which approximates PCA but does not require training data, to reduce the dimensionality to a vector of 13 MFCCs. [20]

Algorithm 1. Calculating MFCC Feature Vector

- 1: Calculate the spectrum using the DFT
- 2: Take the log of the spectrum
- 3: Apply Mel-scaling and smoothing
- 4: Decorrelate using the DCT.

#### 3. Problem description

A common feature that aids record producers to meet the demands of the target audiences, musicologists to study musical influences and music enthusiasts to summarize their collections is the musical genre identification.

The genre concept is inherently subjective because the influences, hierarchy or the intersection of a song to a specific genre isn't universally agreed upon.

This point is backed up by a comparison of three Internet music providers that found very big differences in the number of genres, the words that describe that genre, and the structure of the genre hierarchies. [18]

Although there are some inconsistencies caused by its subjective nature, the genre concept has shown interest from the MIR community.

The various papers and works on this subject reflect the authors' assumptions about the genres. Copyright laws prevented authors from establishing a common database of songs, making it difficult to directly compare the results.

## 4. Experiments description

The datasets used for training and testing were MAGNATUNE [21] and two collections that were built in the early stages of the MARSYAS [22] framework.

As the ADAMS system is built in a modular form the various tasks (described below) can be automatized and the sound can "flow" through these modules until the complete analysis is made.

The ADAMS main directory structure can be seen in the following picture:

| <pre>File Edit View Bookmarks Settings Help Processed: 4/audio/random/william_brooks-bitter_circus-07-the_hanging_of_allen_scott_johnson-262-291.wav Processed: 5/audio/random/williamson-a_few_things_to_hear_before_we_all_blow_up-12-a_please_goodbye_from_ ore-233-262.wav Processed: 7/audio/random/ambient_teknology-phoenix-01-ambient_teknology-117-146.wav Processed: 9/audio/random/ambient_teknology-phoenix-01-ambient_teknology-59-88.wav Processed: 9/audio/random/ambient_teknology-phoenix-01-ambient_teknology-59-88.wav Processed: 9/audio/random/ambient_teknology-phoenix-01-ambient_teknology-59-88.wav Processed: 9/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-378-407.wav Processed: 10/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-378-407.wav Processed: 11/audio/random/ammonite-reconnection-07-angel_hold_on262-291.wav Processed: 13/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-378-407.wav Processed: 13/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-378-407.wav Processed: 13/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-320-349.wav Processed: 13/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-320-349.wav Processed: 14/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-320-349.wav Processed: 15/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-320-349.wav Processed: 15/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-320-349.wav Processed: 15/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-320-349.wav Processed: 15/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-320-349.wav Processed: 15/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-320-349.wav Processed: 15/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-320-349.wav Proces</pre>            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ADAMS/b : bash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 0 ×                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| <pre>Processed: 4/audio/random/william brooks-bitter_circus-07-the_hanging_of_allen_scott_johnson-262-291.wav Processed: 5/audio/random/ammonite-reconnection-07-angel_hold_on291-320.wav Processed: 6/audio/random/williamson-a_few_things_to_hear_before_we_all_blow_up-12-a_please_goodbye_from_ ore-233-262.wav Processed: 7/audio/random/ambient_teknology-phoenix-01-ambient_teknology-117-146.wav Processed: 8/audio/random/ambient_teknology-phoenix-01-ambient_teknology-59-88.wav Processed: 9/audio/random/ambient_teknology-phoenix-01-ambient_teknology-59-88.wav Processed: 10/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-378-407.wav Processed: 11/audio/random/williamson-a_few_things_to_hear_before_we_all_blow_up-12-a_please_goodbye_from hore-204-233.wav Processed: 12/audio/random/williamson-a_few_things_to_hear_before_we_all_blow_up-12-a_please_goodbye_from hore-204-233.wav Processed: 13/audio/random/mamonite-reconnection-07-angel_hold_on262-291.wav Processed: 14/audio/random/mamonite-reconnection-07-angel_hold_on262-291.wav Processed: 15/audio/random/mamonite-reconnection-07-angel_hold_on262-291.wav Processed: 16/audio/random/mamonite-reconnection-07-angel_hold_on262-291.wav Processed: 15/audio/random/ambient_teknology-phoenix-01-ambient_teknology-0-29.wav Processed: 16/audio/random/ambient_teknology-phoenix-01-ambient_teknology-0-29.wav Processed: 16/audio/random/ambient_teknology-phoenix-01-ambient_teknology-0-29.wav Processed: 17/audio/random/ambient_teknology-phoenix-01-ambient_teknology-0-29.wav Processed: 17/audio/random/ambient_teknology-phoenix-01-ambient_teknology-0-29.wav Processed: 16/audio/random/ambient_teknology-phoenix-01-ambient_teknology-146-175.wav Finished feature extraction Finished feature extraction Finished feature extraction Finished feature extraction Finished classifier training [adrian@localhost bin]\$ bin/ col/ saveres/ scripts/ test/ [adrian@localhost bin]\$</pre> | File Edit View Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ookmarks Settings Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Processed: 4 -<br>Processed: 5 -<br>Processed: 5 -<br>Processed: 6 -<br>ore-233-262.wav<br>Processed: 7 -<br>Processed: 8 -<br>Processed: 9 -<br>hnee_vom_himmel<br>Processed: 10 -<br>Processed: 10 -<br>Processed: 11 -<br>hore-204-233.wa<br>Processed: 12 -<br>Processed: 13 -<br>Processed: 14 -<br>Processed: 15 -<br>Processed: 15 -<br>Processed: 15 -<br>Processed: 16 -<br>Processed: 16 -<br>Processed: 17 -<br>Finished featur<br>Finished featur<br>Finished classi<br>[adrian@localho | <pre>/audio/random/william_brooks-bitter_circus-07-the_hanging_of_allen_scott_johnson-262-29<br/>/audio/random/ammonite-reconnection-07-angel_hold_on291-320.wav<br/>/audio/random/ambient_reconnection-07-angel_hold_on291-320.wav<br/>/audio/random/ambient_teknology-phoenix-01-ambient_teknology-117-146.wav<br/>/audio/random/ambient_teknology-phoenix-01-ambient_teknology-59-88.wav<br/>/audio/random/american_bach_soloists-j_s_bach_cantatas_volume_v-01-gleichwie_der_rege<br/>L_fallt_bwv_18_i_sinfonia-117-146.wav<br/>/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-378-407.wav<br/>/audio/random/williamson-a_few_things_to_hear_before_we_all_blow_up-12-a_please_goodby<br/>av<br/>/audio/random/william_brooks-bitter_circus-08-upstairs_with_leslie-0-29.wav<br/>/audio/random/william_brooks-bitter_circus-08-upstairs_with_leslie-0-29.wav<br/>/audio/random/ambient_teknology-the_all_seeing_eye_project-01-cyclops-320-349.wav<br/>/audio/random/ambient_teknology-phoenix-01-ambient_teknology-0-29.wav<br/>/audio/random/ambient_teknology-phoenix-01-ambient_teknology-0-29.wav<br/>/audio/random/ambient_teknology-phoenix-01-ambient_teknology-146-175.wav<br/>re_axtaction<br/>ifier training<br/>ost binj% ls -a/<br/>sis/ audio/ bin/ col/ saveres/ scripts/ test/<br/>ost binj% l</pre> | 1.wav<br>_from_wh<br>n_und_sc<br>e_from_w |
| ADAMS/b : bash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ADAMS/b : bash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · · · · · · · · · · · · · · · · ·     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |

Fig. 4. ADAMS Main Directory Structure.

The machine learning tasks are done with the WEKA [23] tool, loading the compatible arff files produced with the aid of MARSYAS.

The chosen OS for these experiments was Mandriva Linux 2011, the compiler version being "gcc (GCC) 4.6.1 20110627 (Mandriva)".

Extractors that were used:

- BEAT: Beat histogram features
- LPCC: LPC derived Cepstral coefficients
- LSP: Linear Spectral Pairs
- MFCC: Mel-Frequency Cepstral Coefficients
- SCF: Spectral Crest Factor (MPEG-7)
- SFM: Spectral Flatness Measure (MPEG-7)
- SFMSCF: SCF and SFM features
- STFT: Centroid, Rolloff, Flux, ZeroCrossings
- STFTMFCC: Centroid, Rolloff Flux, ZeroCrossings, Mel-Frequency Cepstral Coefficients

On every experiment for the specified extractors are also presented the confusion matrices [24] in order to have an idea about the actual and the predicted classifications done by the classification system.

## 4.1. Experiment 1: Classification using "Timbral Features"

This experiment uses the following extractors: Time ZeroCrossings, Spectral Centroid, Flux and Rolloff, and Mel-Frequency Cepstral Coefficients (MFCC).

We extract these features with the option – timbral and we also create the file that will be loaded with the WEKA environment for analysis with the following command:

```
./adamsfeature -sv -timbral ../col/all.mf -w ../analysis/alltimbral.arff
```

Based on experiment the following classifiers were chosen: Bayes Network, Naive Bayes, Decision Table, Filtered Classifier and NNGE.

The results are shown in the following table:

 Table 2. Timbral Features - Classifier Results

| Classifier          | Model<br>Build<br>Time(s) | Coorectly<br>Classified | Incorrectly<br>Classified | Mean<br>absolut<br>error | Root<br>mean<br>squared<br>error | Relative<br>absolute<br>error | Root<br>relative<br>squared<br>error |
|---------------------|---------------------------|-------------------------|---------------------------|--------------------------|----------------------------------|-------------------------------|--------------------------------------|
| Bayes Network       | 1.78                      | 62.5 <mark>%</mark>     | 37.5%                     | 0.0753                   | 0.2648                           | 41.82%                        | 88.28%                               |
| Naive Bayes         | 0.04                      | 55 <mark>%</mark>       | 45%                       | 0.0902                   | 0.2925                           | 50.09%                        | 97.51%                               |
| Decision Table      | 15.49                     | 51.6%                   | 48.4%                     | 0.1467                   | 0.2599                           | 81.53%                        | 86.64%                               |
| Filtered Classifier | 4.55                      | 87.8%                   | 12.2%                     | 0.0348                   | 0.1318                           | 19.31%                        | 43.94%                               |
| NNGE                | 10.69                     | 100%                    | 0%                        | 0                        | 0                                | 0                             | 0                                    |

Table 2 was build loading the file alltimbral.arff in WEKA and training the builtin classifiers



Fig. 5. WEKA Prediction Errors Graph.

|                                                  | Cor                                              | ıfu≤                                           | sion                                                 | Ма                                  | tri                                               | x =                                                           |                                                                         | Ba                                           | yes                                                      | Ne                                                              | two                                                              | rk                                                                |                                        |                                               |                                               | =                                             | 0                                                    | onfu                                                                          | sio                                                                             | n M                                                 | latr                                                        | ix                                                  |                                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ve 1                                                                  | Bay                                                 | yes                                                                        |                                                             |       |        |
|--------------------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------------|-------------------------------------|---------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|-------|--------|
| a<br>63<br>6<br>1<br>9<br>19<br>2<br>7<br>1<br>5 | b<br>82<br>2<br>1<br>0<br>14<br>2<br>0<br>1<br>1 | C<br>5<br>6<br>6<br>0<br>2<br>2<br>1<br>3<br>8 | d 7<br>0 7<br>647<br>10<br>111<br>14                 | e<br>2004502790                     | f<br>1071184249                                   | g<br>6042227<br>77104                                         | h<br>8<br>1<br>6<br>1<br>6<br>1<br>6<br>5<br>1                          | i<br>2<br>9<br>19<br>19<br>1<br>3<br>61<br>5 | j<br>6<br>6<br>6<br>0<br>2<br>7<br>3<br>5<br>3<br>4<br>3 | -><br>a<br>1 1<br>1 0<br>1 0<br>1 0<br>1 1<br>1 1<br>1 1<br>1 1 |                                                                  | lassi<br>bl<br>cl<br>co<br>di<br>hi<br>ja<br>me<br>po<br>re<br>ro | lfied                                  | 1 as                                          |                                               |                                               | a<br>40<br>9<br>1<br>3<br>9<br>3<br>0<br>2<br>4      | b c<br>0 14<br>0 (<br>3 59<br>0 5<br>0 1<br>3 2<br>0 1<br>0 4<br>0 19<br>3 11 | : d<br>: 8<br>: 0<br>: 45<br>: 45<br>: 45<br>: 14<br>: 10<br>: 10<br>: 8<br>: 3 | e<br>3<br>6<br>5<br>5<br>5<br>1<br>8<br>8<br>8<br>6 | f<br>13<br>7<br>2<br>0<br>46<br>5<br>2<br>3<br>4            | 9<br>6<br>5<br>3<br>2<br>2<br>67<br>2<br>12         | h<br>(<br>1<br>2<br>7<br>1<br>2<br>51<br>2<br>1 | n i<br>4 (0)<br>2 (2)<br>7 12<br>7 12<br>7 12<br>7 12<br>7 12<br>9 (1)<br>9 | $     \begin{array}{c}         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\         12 \\       $ | j<br>2  <br>3  <br>1  <br>5  <br>2  <br>3  <br>5  <br>2  <br>7  <br>7 | <<br>a<br>b<br>c<br>d<br>e<br>f<br>g<br>h<br>i<br>j | - c]<br>= (<br>= (<br>= (<br>= (<br>= (<br>= (<br>= (<br>= (<br>= (<br>= ( | lass<br>bl<br>co<br>di<br>ja<br>me<br>po<br>re<br>ro        | ;ifie | d as   |
|                                                  | Co                                               | nfu                                            | sior                                                 | n Ma                                | itri                                              | ix =                                                          |                                                                         | De                                           | ecis                                                     | ion                                                             | tab                                                              | le                                                                |                                        |                                               |                                               |                                               |                                                      | Con                                                                           | fus                                                                             | ion                                                 | Mat                                                         | ri                                                  | < =                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ter                                                                   | ed                                                  | cla                                                                        | ssii                                                        | lier  |        |
| a<br>26<br>2<br>9<br>3<br>9<br>5<br>6<br>7<br>2  | b<br>9<br>73<br>1<br>9<br>10<br>10<br>2          | с<br>14<br>66<br>4<br>9<br>2<br>4<br>11        | d<br>12<br>11<br>44<br>15<br>5<br>11<br>5<br>7<br>19 | e 1<br>0 4<br>45<br>0 17<br>10<br>1 | f 5<br>15<br>4<br>3<br>0<br>7<br>1<br>0<br>2<br>5 | 9<br>5<br>4<br>3<br>2<br>0<br>1<br>6<br>0<br>2<br>0<br>1<br>6 | h<br>9<br>0<br>2<br>7<br>9<br>0<br>4<br>7<br>9<br>0<br>4<br>7<br>2<br>3 | i<br>23<br>24<br>6<br>7<br>67                | j<br>5<br>10<br>1<br>8<br>10<br>4<br>1<br>31             |                                                                 | C<br>a =<br>c =<br>d =<br>f =<br>f =<br>f =<br>i =<br>i =<br>j = | lass:<br>bl<br>co<br>di<br>hi<br>ja<br>me<br>po<br>re<br>ro       | ifie                                   | d as                                          |                                               |                                               | a<br>95<br>3<br>7<br>2<br>2<br>2<br>2<br>2<br>1<br>1 | b<br>91<br>0<br>3<br>1<br>0<br>0<br>0<br>0                                    | C<br>30<br>87<br>6<br>1<br>0<br>3<br>2<br>7                                     | d<br>0<br>91<br>1<br>32<br>4<br>2                   | e<br>0<br>0<br>86<br>1<br>3<br>4<br>2                       | f 0 4 1 0 0 3 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 9<br>0<br>2<br>0<br>1<br>0<br>9<br>1<br>2<br>3  | h<br>1<br>0<br>2<br>0<br>1<br>8<br>6<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i<br>1<br>0<br>1<br>4<br>0<br>0<br>4<br>2<br>8<br>4<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | j<br>0<br>1<br>0<br>0<br>2<br>1<br>2<br>75                            | <                                                   | <br>a =<br>b =<br>c =<br>f =<br>f =<br>f =<br>j =                          | cla<br>= b1<br>= c1<br>= di<br>= hi<br>= ja<br>= po<br>= ro | ssif  | ied as |
|                                                  |                                                  |                                                |                                                      |                                     |                                                   |                                                               |                                                                         |                                              | = C                                                      | onfi                                                            | sio                                                              | n Mat                                                             | rix                                    |                                               | NN                                            | GE                                            |                                                      |                                                                               |                                                                                 |                                                     |                                                             |                                                     |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                                                     |                                                                            |                                                             |       |        |
|                                                  |                                                  |                                                |                                                      |                                     |                                                   |                                                               |                                                                         | 1                                            | a<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | b<br>99<br>0<br>0<br>0<br>0<br>0<br>0<br>0                      | C<br>0<br>100<br>0<br>0<br>0<br>0<br>0<br>0                      | d<br>9<br>199<br>9<br>9<br>9<br>9<br>9<br>9                       | e<br>0<br>0<br>100<br>0<br>0<br>0<br>0 | F<br>0<br>0<br>0<br>100<br>100<br>0<br>0<br>0 | 9<br>0<br>0<br>0<br>101<br>0<br>101<br>0<br>0 | h<br>0<br>0<br>0<br>0<br>100<br>100<br>0<br>0 | i<br>0<br>0<br>0<br>0<br>0<br>0<br>100               | j<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0            |                                                                                 | <<br>a<br>b<br>c<br>d<br>e<br>f<br>g<br>h<br>i<br>i | cla<br>= t<br>= c<br>= c<br>= t<br>= j<br>= r<br>= r<br>= r | issi<br>il<br>il<br>il<br>ia<br>ie<br>io<br>re<br>o | LF1                                             | ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       |                                                     |                                                                            |                                                             |       |        |

Fig. 6. Confusion Matrices for Timbral Features Classification

# 4.2. Experiment 2: Classification using "Spectral Features"

This experiment uses the following extractors: Spectral Centroid, Flux and Roll off. The feature extraction was done with the following command:

./adamsfeature -sv -spfe ../col/all.mf -w ../analysis/allspectral.arff

Using the same classifiers the results are:

| Classifier          | Model<br>Build<br>Time(s) | Correctly<br>Classified | Incorrectly<br>Classified | Mean<br>absolute<br>error | Root<br>mean<br>squared<br>error | Relative<br>absolute<br>error | Root<br>relative<br>squared<br>error |
|---------------------|---------------------------|-------------------------|---------------------------|---------------------------|----------------------------------|-------------------------------|--------------------------------------|
| Bayes Network       | 1.78                      | 46.5%                   | 53.5%                     | 0.1192                    | 0.2742                           | 66.21%                        | 91.41%                               |
| Naive Bayes         | 0.23                      | 42.5%                   | 57.5%                     | 0.1205                    | 0.2924                           | 66.92%                        | 97.47%                               |
| Decision Table      | 0.72                      | 46.1%                   | 53.9%                     | 0.1491                    | 0.2655                           | 82.82%                        | 88.49%                               |
| Filtered Classifier | 0.41                      | 63.6%                   | 36.4%                     | 0.099                     | 0.2225                           | 54.98%                        | 74.15%                               |
| NNGE                | 2.02                      | 100%                    | 0%                        | 0                         | 0                                | 0                             | 0                                    |

Table 3. Spectral Features - Classifier Results

=== Confusion Matrix === Bayes Network --- Confusion Matrix --- Naive Bayes 
 f
 g
 h
 i

 0
 25
 1
 5

 5
 5
 0
 0

 3
 15
 2
 0

 0
 21
 12
 6

 0
 4
 24
 26

 12
 6
 5
 1

 0
 77
 2
 0

 1
 2
 57
 5

 1
 3
 15
 51

 2
 33
 4
 4
 ef 09 11 013 110 400 U C 2 11 76 2 6 36 0 4 4 0 2 1! 23 12 5 1 4 4 0 3 3 9 4 5 1 8 10 h 2 0 2 18 i j 7 6 3 9 5 1 18 1 0 6 1 1 7 5 51 1 9 13 classified as <-g 16 3 12 j 6 9 1 1 6 1 5 1 <-- classified as j2281442728 a = b1 b = c1 c = co d = di a = b1 b = c1 c = co d = di 41 l 1 16 10 Ì e = hi f = ja g = me h = po i = re j = ro 4 10 = hi Т e f = ja = me 4 5 9 g h i j = po = re 14 i = ro === Confusion Matrix === Decision table === Confusion Matrix === Filtered classifier <-- classified as
 a = bl
 b = cl
 c = co
 d = di
 e = hi
 f = ja
 g = me
 b = pc</pre> 
 f
 g
 h
 i

 13
 1
 0
 0

 13
 6
 1
 1

 1
 8
 8
 4

 0
 1
 13
 16

 63
 4
 1
 0

 3
 77
 1
 1

 0
 0
 66
 3

 0
 1
 7
 61

 3
 14
 4
 3
 c d 21 10 2 0 44 9 e f 1 12 0 12 1 11 j 1 | 1 | 3 | f g 12 16 i 2 0 1 3 <-- classified as с б 2 52 d 2 0 5 b 4 h 2 а 31 <-- clas a = bl b = cl c = co d = di e = hi f = ja g = me h = po i = re j = ro a 74 b 1 e Ø j 4 1 4 3 2 3 5 3 1 Т 0 2 15 4 1 81 0 13 i. 1 5 2 14 7 7 11 2 0 0 52 5 0 4 66 3 0 11 52 4 0 1 3 5 0 5 5 12 5 6 12 8 4 2 10 8 0 15 1 1 0 4 4 1 11 39 0 3 2 35 5 1 5 62 18 1 0 16 2 2 3 9 18 4 | 0 | 3 | 35957 7 22 5 3 57 9 5 20 20 0 0 3 | 0 11 | 3 1 | 49 0 | 5 18 | Ĩ. g h i j 33| 611| 344| = po = re 14 = r0 --- Confusion Matrix --- NNGE <-- classified as
 a = bl
 b = cl
 c = co
 d = di
 f = ja
 c = -</pre> b Ø a 100 d e Ø f Ø h Ø C Ø i 0 0 0 0 0 0 0 j 0 | 0 | 0 | 0 | 0 | 0 0 0 99 A 0 0 0 0 0 0 0 0 100 0 0 0 Ø 0 0 0 0 100 0 0 0 0 0 0 = ui = hi = ja = me = po = re 0 100 0 ß A A A 0 100 ß 0 0 0 0 0 ø 0 0 0 0 0 0 0 101 g h i 0 0 Ø 0 0 0 0 100 i = re j = ro Ō 0 0 100 0 A A 0 0 100

Fig. 7. Confusion Matrices for Spectral Features Classification

## 4.3 Experiment 2: Classification using "MFCC"

This experiment uses the Mel-Frequency Cepstral Coefficients extractors. The feature extraction was done with the following command:

./adamsfeature -sv -mfcc ../col/all.mf -w ../analysis/allmfcc.arff

| Table 4. MFCC Features | - Classifier Results |
|------------------------|----------------------|
|------------------------|----------------------|

MT.

| Classifier          | Model<br>Build<br>Time(s) | Correctly<br>Classified | Incorrectly<br>Classified | Mean<br>absolute<br>error | Root<br>mean<br>squared<br>error | Relative<br>absolute<br>error | Root<br>relative<br>squared<br>error |
|---------------------|---------------------------|-------------------------|---------------------------|---------------------------|----------------------------------|-------------------------------|--------------------------------------|
| Bayes Network       | 1.23                      | 63.3%                   | 36.7%                     | 0.0764                    | 0.2475                           | 42.42%                        | 82.50%                               |
| Naive Bayes         | 0.22                      | 58.5%                   | 41.5%                     | 0.0847                    | 0.2694                           | 47.07%                        | 89.80%                               |
| Decision Table      | 6.4                       | 49.1%                   | 50.9%                     | 0.1481                    | 0.2638                           | 82.27%                        | 87.94%                               |
| Filtered Classifier | 0.81                      | 87.1%                   | 12.9%                     | 0.0363                    | 0.1348                           | 20.18%                        | 44.92%                               |
| NNGE                | 3.74                      | 99.8%                   | 0.2%                      | 0.0004                    | 0.02                             | 0.22%                         | 6.66%                                |

=== Confusion Matrix === Bayes Network === Confusion Matrix === Naive Bayes g h i 6 11 8 4 5 1 9 10 10 5 1 22 2 0 1 84 6 0 3 45 12 3 45 12 3 45 12 3 45 12 3 45 12 3 45 1 <-- classified as b С j 7 3 9 <-- classified as 13 0 0 0 3 1 48 1 11 58 b c 9 8 93 9 3 55 9 5 9 9 9 0 9 0 9 0 0 6 0 3 đ f i j 12 3 14 а e 0 1 1 g 8 1 3 h 4 0 2 6 5 0 47 0 5 3 2 3 3 1 -1 92 6 0 1 3 a = bl b = cl 7 0 2 a = bl b = cl c = co d = di 12 0 14 4 2 0 1 0 57 45 Т Ì D = C1 C = CO d = di e = hi f = ja İ 0 6 2 1 6 69 5 0 0 1 0 3 0 0 
 55
 14
 1
 0
 3
 2

 5
 47
 1
 1
 16
 6

 0
 13
 64
 0
 5
 5

 0
 3
 1
 57
 6
 0

 0
 2
 0
 0
 87
 3

 6
 22
 10
 5
 3
 31

 3
 12
 7
 1
 0
 2

 9
 11
 4
 2
 23
 2
 13 1 5 7 5 7 45 2 10 9 0 12 3 18 Т e = hi f = ja 77 0 3 0 3 10 1 9 2 13 1 0 0 9 6 3 Ì f = ja g = me h = po i = re j = ro Т 0 0 0 0 18 | 1 3 | 9 12 | 61 8 | 2 45 | g = me h = po i = re j = ro = ne 5 2 13 9 8 6 4 6 Т 2 Я trix -f g h J 1 2 1 0 1 2 0 4 0 4 2 0 2 7 88 1 3 1 92 0 0 93 J 2 0 1 1 7 0 0 4 1 1 4 === Confusion Matrix === Decision table === Confusion Matrix === Filtered classifier  $\begin{array}{cccc} & d & e & f \\ 14 & 8 & 2 & 1 \\ 0 & 0 & 0 & 21 \\ 29 & 8 & 1 & 4 \\ 9 & 47 & 7 & 1 \\ 3 & 13 & 45 & 1 \\ 2 & 0 & 0 & 60 \\ 1 & 16 & 0 & 1 \\ 4 & 19 & 6 & 1 \\ 6 & 2 & 11 & 2 \\ 11 & 17 & 2 & 4 \end{array}$  
 f
 g
 h

 1
 7
 22

 21
 1
 0

 4
 3
 19

 1
 5
 17

 1
 1
 19

 60
 4
 1

 1
 70
 7

 1
 3
 58

 2
 1
 8

 4
 18
 15
 <-- classified as i 9 14 7 13 j Ø с 1 1 <-- classified as b d i 1 0 1 1 j 1 | 3 | 4 | 1 | 3 | 3 | 3 | а a = bl b = cl c = co d = di e = hi 36 I 91 0 5 3 0 1 3 0 95 2 0 1 a = bl b = cl 74 2 0 25 3 | 2 | 3 | 0 | 3 | 2 | 0 | 0 18 5 2 4 6 13 00 40 21 21 00 11 871 871 8751 c = cod = di0 86 0 1 0 0 3 1 0 0 0 2 0 1 0 5 1 85 0 2 1 2 0 2 2 3 1 1 5 4 e = hi f = ja e f 3 Ø 3 f = ja g = me h = po = ja g = me h = r~ 0 0 0 0 h = po i = re j = ro 57 0 | 7 15 | i j = re = ro 6 4 11 1 75 === Confusion Matrix === NNGE <-- classified as
 a = bl
 b = cl
 c = co
 d = di
 a = bi</pre> j 0 | h С d е f h а g Ø i 0 0 0 100 . Ø 0 0 0 0 0 99 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 j e f = hi 0 100 0 j = ja 0 101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 j g = ne 0 0 0 0 0 0 = po 100 0 ĥ i j 100 0 = re = ro 0 0 0 0 0 0 0 0 0 100 j

Fig. 8. Confusion Matrices for MFCC Features Classification

## 4.4 Experiment 4: Classification using "Zero Crossings"

The feature extraction was done with the following command:

./adamsfeature -sv -zcrs ../col/all.mf -w ../analysis/allzcrs.arff

| Classifier          | Model<br>Build<br>Time(s) | Correctly<br>Classified | Incorrectly<br>Classified | Mean<br>absolute<br>error | Root<br>mean<br>squared<br>error | Relative<br>absolute<br>error | Root<br>relative<br>squared<br>error |
|---------------------|---------------------------|-------------------------|---------------------------|---------------------------|----------------------------------|-------------------------------|--------------------------------------|
| Bayes Network       | 0.09                      | 34.7%                   | 65.3%                     | 0.1437                    | 0.2789                           | 79.83%                        | 92.97%                               |
| Naive Bayes         | 0.01                      | 34.5%                   | 65.5%                     | 0.1441                    | 0.2869                           | 80.06%                        | 95.63%                               |
| Decision Table      | 0.22                      | 42.4%                   | 57.6%                     | 0.1511                    | 0.2691                           | 83.95%                        | 89.71%                               |
| Filtered Classifier | 0.15                      | 44%                     | 56%                       | 0.1403                    | 0.2649                           | 77.94%                        | 88.24%                               |
| NNGE                | 0.52                      | 99.8%                   | 0.2%                      | 0.0004                    | 0.02                             | 0.22%                         | 6.66%                                |

 Table 5. Zero Crossings Features - Classifier Results

|                                                           | Cor                                          | 1fu                                                | sion                                                 | Ma                                                 | itri                                                   | x =                                            |                                          | Ba                                      | yes                                              | Net                                                                                                   | wo                                                                                | rk                                                          |                                        |                                        |                                                  | =:                                        | == Co                                                                                | onfus                                                                        | ion                                                                  | Mat                                                                                       | rix                                                             |                                                                       | Na                                                                        | ive                                                                        | Ba                                   | yes                                                                                             |                                                              |         |   |
|-----------------------------------------------------------|----------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|------------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------|---|
| a<br>43<br>6<br>28<br>9<br>11<br>22<br>3<br>4<br>19<br>17 | b<br>76<br>14<br>0<br>38<br>3<br>0<br>7      | c<br>13<br>4<br>12<br>7<br>9<br>1<br>2<br>14<br>10 | d<br>9<br>6<br>32<br>27<br>8<br>10<br>14<br>10<br>15 | e<br>3<br>15<br>10<br>17<br>2<br>3<br>9<br>11<br>4 | f<br>1<br>8<br>1<br>3<br>12<br>1<br>9<br>4<br>4        | 9<br>13<br>10<br>16<br>2<br>72<br>1<br>3<br>23 | h<br>0<br>19<br>3<br>7<br>62<br>18<br>10 | i<br>8<br>16<br>4<br>1<br>8<br>21<br>10 | j<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        | <-<br>  a<br>  b<br>  c<br>  d<br>  f<br>  f<br>  j                                                   | - c]<br>= b<br>= c<br>= c<br>= c<br>= c<br>= c<br>= c<br>= c<br>= c<br>= c<br>= c | lassi<br>)1<br>:1<br>ii<br>ja<br>ie<br>io<br>re<br>o        | fied                                   | as                                     |                                                  |                                           | a  <br>42 17<br>2 80<br>25 28<br>5 3<br>10 1<br>18 58<br>8 5<br>3 7<br>20 2<br>12 15 | ) C<br>7 13<br>5 0<br>3 16<br>3 7<br>9 7<br>3 3<br>5 0<br>1 8<br>2 17<br>5 9 | d<br>6<br>35<br>25<br>15<br>24<br>8<br>18                            | e<br>0<br>2<br>5<br>1<br>0<br>1<br>0<br>3                                                 | f (<br>3 1)<br>6 5<br>1 23<br>2 8<br>5 (<br>0 72<br>1 2<br>3 2) | g h<br>5 0<br>2 2<br>3 15<br>8 28<br>5 5<br>2 1<br>5 7<br>2 17<br>4 6 | i<br>2<br>0<br>1<br>0<br>2<br>0<br>1<br>1<br>1<br>1                       | j<br>0  <br>6  <br>5  <br>3  <br>4  <br>13  <br>9                          | <pre>&lt;- a b c d d f g h i j</pre> | ·- cl<br>) = b<br>) = c<br>: = c<br>i = d<br>: = h<br>: = j<br>j = m<br>) = p<br>i = r<br>j = r | lassif<br>ol<br>co<br>li<br>ni<br>ja<br>ne<br>oo<br>re<br>oo | Fied as |   |
|                                                           | Co                                           | nfu                                                | sio                                                  | n Ma                                               | atri                                                   | ix =                                           |                                          | De                                      | cis                                              | ion                                                                                                   | abl                                                                               | e                                                           |                                        |                                        |                                                  |                                           |                                                                                      | Conf                                                                         | usio                                                                 | ηM                                                                                        | atri                                                            | x ==                                                                  | F                                                                         | ilter                                                                      | red                                  | clas                                                                                            | ssifie                                                       | r       |   |
| a<br>52<br>9<br>35<br>10<br>22<br>7<br>4<br>15            | b<br>73<br>9<br>0<br>28<br>28<br>2<br>0<br>4 | с<br>5<br>13<br>13<br>5<br>2<br>6<br>8<br>7        | d<br>1<br>24<br>9<br>3<br>6<br>7<br>1<br>9           | e 1<br>0 2<br>14 41<br>3 1<br>21<br>5              | f<br>7<br>12<br>15<br>2<br>0<br>26<br>1<br>0<br>2<br>8 | 9<br>9<br>2<br>72<br>1<br>20                   | h<br>0<br>19<br>18<br>1<br>62<br>14<br>5 | i<br>9<br>20<br>6<br>47<br>13           | j<br>8<br>1<br>5<br>10<br>1<br>9<br>4<br>3<br>14 | <pre>&lt;-     a     a     b     c     c     d     c     d     e     f     g     h     i     j </pre> |                                                                                   | Lassi<br>bl<br>cl<br>co<br>di<br>ja<br>ne<br>po<br>re<br>ro | ified                                  | l as                                   |                                                  |                                           | a<br>46<br>23<br>10<br>6<br>19<br>7<br>6<br>4                                        | b 8 1<br>87 2<br>3 0<br>35<br>5<br>1<br>9                                    | c d<br>3 2<br>0 0<br>4 4<br>8 29<br>0 12<br>4 3<br>1 7<br>4 7<br>7 9 | e<br>0<br>2<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38 | f<br>8<br>3<br>13<br>3<br>23<br>2<br>2<br>3<br>7                | 9<br>9<br>4<br>9<br>2<br>5<br>71<br>0<br>19                           | h i<br>0 12<br>0 (<br>2 9<br>19 2)<br>1 7<br>1 (<br>52 (<br>14 48<br>5 13 | i j<br>2 2<br>9 1<br>9 4<br>3 8<br>9 0<br>7 1<br>9 7<br>5 1<br>3 3<br>3 12 |                                      | <pre>&lt; a = b = c = d = e = f = g = h = j = </pre>                                            | class<br>bl<br>cl<br>di<br>hi<br>ja<br>me<br>po<br>re<br>ro  | ified a | 5 |
|                                                           |                                              |                                                    |                                                      |                                                    |                                                        |                                                |                                          |                                         | = C                                              | onfu                                                                                                  | sio                                                                               | n Mat                                                       | trix                                   |                                        | NN                                               | GE                                        |                                                                                      |                                                                              |                                                                      |                                                                                           |                                                                 |                                                                       |                                                                           |                                                                            |                                      |                                                                                                 |                                                              |         |   |
|                                                           |                                              |                                                    |                                                      |                                                    |                                                        |                                                |                                          | 1                                       | a<br>00<br>0<br>0<br>0<br>0<br>0<br>0<br>0       | b<br>99<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                            | C<br>0<br>100<br>0<br>0<br>0<br>0<br>0                                            | d<br>0<br>100<br>0<br>0<br>0<br>0<br>0                      | e<br>0<br>0<br>100<br>0<br>0<br>0<br>0 | F<br>0<br>0<br>0<br>100<br>0<br>0<br>0 | g<br>0<br>0<br>0<br>101<br>1<br>0<br>1<br>0<br>1 | h<br>0<br>0<br>0<br>0<br>9<br>9<br>9<br>0 | i<br>0<br>0<br>0<br>0<br>0<br>100                                                    | j<br>0<br>0<br>0<br>0<br>0<br>0<br>99                                        | <-<br> <br> <br> <br> <br> <br> <br>                                 | - c<br>a =<br>b =<br>c =<br>c =<br>f =<br>f =<br>j =                                      | lass<br>bl<br>cl<br>di<br>hi<br>ja<br>me<br>po<br>re<br>ro      | ;ifi                                                                  | ed a:                                                                     | 5                                                                          |                                      |                                                                                                 |                                                              |         |   |

Fig. 9. Confusion Matrices for Zero Crossings Features Classification.

# 4.5 Experiment 5: Classification using "Spectral Flatness Measure"

The feature extraction was done with the following command:

./adamsfeature -sv -sfm ../col/all.mf -w ../analysis/allsfm.arff

|          |              | 2 yrs          |         |
|----------|--------------|----------------|---------|
| Table 6. | SFM Features | s - Classifier | Results |

| Classifier          | Model<br>Build<br>Time(s) | Correctly<br>Classified | Incorrectly<br>Classified | Mean<br>absolute<br>error | Root<br>mean<br>squared<br>error | Relative<br>absolute<br>error | Root<br>relative<br>squared<br>error |
|---------------------|---------------------------|-------------------------|---------------------------|---------------------------|----------------------------------|-------------------------------|--------------------------------------|
| Bayes Network       | 1.78                      | 58.4%                   | 41.6%                     | 0.0838                    | 0.2738                           | 46.53%                        | 91.28%                               |
| Naive Bayes         | 0.15                      | 53.2%                   | 46.8%                     | 0.0935                    | 0.294                            | 51.96%                        | 97.99%                               |
| Decision Table      | 12.35                     | 50.4%                   | 49.6%                     | 0.1472                    | 0.2621                           | 81.78%                        | 87.37%                               |
| Filtered Classifier | 2.1                       | 83.8%                   | 16.2%                     | 0.045                     | 0.15                             | 25.01%                        | 50.12%                               |
| NNGE                | 9.24                      | 99.8%                   | 0.2%                      | 0.0004                    | 0.02                             | 0.22%                         | 6.66%                                |

```
=== Confusion Matrix === Bayes Network
                                                                                                                                                === Confusion Matrix === Naive Bayes
                                                                                                                                                          i
                                                                                 <-- classified as
                                                                                                                                                        b
0
70
                                                                                                                                                                                                                                           classified as
        b
9
78
19
1
                              e
4
0
9
65
                                             9
0
1
2
10
                                                     h
1
5
5
6
6
1
5
5
10
5
                                                                                                                                                                                                    h
01
7
3
3
4
1
52
                  с
9
                                    f 9
12 0
8 1
5 0
6 10
61 2
0 82
4 3
2 6
4 14
                                                                                                                                                                                       f
10
6
17
49
2
42
2
                                                                                                                                                                                             g
0
1
9
10
3
83
                                                                                                                                                                                                             i
16
1
6
5
1
1
                                                                                                                                                                               e
3
0
5
61
2
0
5
6
4
                                                                                                                                                                                                                    j
9
0
17
                                                                                  a = b1
b = c1
c = co
d = di
e = hi
f = ja
                                                                                                                                                                                                                                   <-- cla:
a = bl
b = cl
c = co
d = di
e = hi
f = ja
g = me
h = po
i = re
                       13
0
13
  39
                                                             13 9
0 0
3 12
4 9
1 2
0 6
1 8
5 10
52 9
2 39
                                                                                                                                                 34
1
2
1
17
6
                                                                                                                                                                                                                             0
12
9
2
6
8
10
9
                12
    022350322
                50
           1 5
0 0
13 4
0 0
1 5
0 3
1 12
                                                                                                                                                                                                                    12
4
9
9
6
43
                       63
                       7
1
8
10
10
         13
                                2
1
4
6
3
                                                                                              ja
me
                                                                                        g
h
i
j
                                                                                                                                                                                                                                    g
h
i
j
                                                                                                                                                                                              4
7
15
                                                                                                                                                                                                                                             po
re
ro
                                                                                              po
re
                                                                                                                                                                                                             39
39
                                                                                                                                                                                                      15
1
                       18
                                                                                                                                                   === Confusion Matrix === Filtered classifier
 === Confusion Matrix === Decision table
                                      f g
3 1
6 1
2 1
3 1
4 8
51 1
8 4
8 4
4 1
5 13
                                                                                  <-- classified as
         b
Ø
78
                                                             i
23
1
14
14
3
13
52
4
                                                                       j
2
0
                       d
14
14
43
10
6
9
12
12
12
19
                               e
1
0
1
44
2
0
11
8
0
                                                      h 4 0 2 10 15 4 1
                                                                                                                                                            b
1
92
                                                                                                                                                             b c
92 3
2 93
0 9
1 1
3 1
0 2
2 3
1 3
2 12
                                                                                                                                                                                                 g
1
0
9
9
4
0
8
                                                                                                                                                                                                        h
2
1
1
2
1
82
9
2
                                                                                                                                                                                                                 i
0
2
1
0
2
7
3
4
                                                                                                                                                                                                                                               classified as
                с
9345
807
031
8
                                                                                                                                                                           d
1
82
5
1
3
2
3
                                                                                                                                                                                  e
1
0
1
86
2
1
3
4
4
                                                                                                                                                                                          F
4
2
1
8
8
8
8
8
2
3
2
2
                                                                                                                                                     a
88
2
4
2
3
0
2
4
3
                                                                                                                                                                                                                           j000110001
                                                                             a = bl
b = cl
                                                                                                                                                                                                                                       a = b1
b = c1
c = co
                                                                                                                                                                                                                                 10
10
3
13
2
9
11
8
                                                                                   b = cl
c = co
d = di
e = hi
f = ja
g = me
h = po
i = re
j = ro
          13
1
9
9
3
1
2
                                                                     12
11
2
3
5
2
35
                                                                                                                                                                                                                                        C
d
                                                                                                                                                                                                                                                 co
di
hi
ja
me
                                                                                                                                                                                                                                            =
                                                                                                                                                                                                                                        e
f
                                                                             =
                                                     32
8
6
                                                                                                                                                                                                                                       g
h
i
j
                                                                                                                                                                                                                                                 po
re
ro
                                                                --- Confusion Matrix --- NNGE
                                                                                                                                                                                     classified as
= bl
= cl
= co
= di
                                                                              b c
6 0
99 0
6 188
6 0
6 0
                                                                                                                     F
0
0
0
0
100
                                                                                                      d
Ø
                                                                                                                                                        i
0
0
0
0
0
                                                                                                                                    9
0
0
0
0
0
                                                                                                                                             h
0
0
0
0
                                                                                                                                                                 j
0
0
0
                                                                   100
0
0
0
0
0
0
0
                                                                                                                                                                                a
b
                                                                                                                                                                      0
                                                                                                               0
                                                                                                                                                                                C
d
e
f
                                                                                           0
0
0
                                                                                                100
                                                                                                               Ā
                                                                                                                                                                  0
0
0
                                                                                                          100
0
0
0
                                                                                                                                                                                         hi
ja
me
po
re
ro
                                                                                                     0
                                                                                                                               101
1
0
1
                                                                                                                                          0
99
0
                                                                                 0
0
                                                                                           0
0
                                                                                                     0
0
                                                                                                                                                        0
0
                                                                                                                                                                 0
0
                                                                                                                         0
0
0
                                                                                                                                                                                g
h
i
                                                                                                                                                              0
99
                                                                        0
                                                                                 0
0
                                                                                           0
0
                                                                                                      0
0
                                                                                                               0
0
                                                                                                                                                   100
                        Fig. 10. Confusion Matrices for Spectral Flatness Measure Features Classification.
```

#### Conclusions

Five experiments were conducted for determining the music genre of a specific audio file. The extracted features varied in each experiment in order to determine which one was more suited to the dataset used. The five classifiers provided different results based on the extracted features and these were put to test with well known machine learning tools and music analysis frameworks like WEKA and MARSYAS, and also with an analysis system developed on top of the MARSYAS framework.

The results show that satisfactory results can be obtained even from the simplistic approaches as Naïve Bayes classification, but better results were obtained using more advanced techniques. The fact that the nearest neighbor produced very good results doesn't mean that it will have the same behavior on another dataset.

Improvements on the presented methods can be obtained by testing these methods on a broader dataset and determining the intrinsic influences of each genre on another.

The conclusions of these influences can have a more meaningful sense from the social point of view like blues and its derivatives and we can find very unlikely results like death metal having roots in jazz music.

# **REFERENCES**

[1] Howes, F. Man Mind and Music. Marin Secker & Warbug LTD., 1948.

[2] Ismir. <u>http://www.ismir.net/</u> (Visited on 2012/01/23)

[3] Mirex. http://www.music-ir.org/mirex/wiki/MIREX\_HOME (Visited on 2012/01/23)

[4] J. Saunders, *Real-time discrimination of broadcast speech/music*, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '96), vol. 2, pp. 993–996, Atlanta, Ga, USA, May 1996.

[5] E. Scheirer and M. Slaney, *Construction and evaluation of a robust multifeature speech/music discriminator*, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '97), vol. 2, pp. 1331–1334, Munich, Germany, April 1997.

[6] J. T. Foote, *A similarity measure for automatic audio classification*, in Proceedings of the AAAI Spring Symposium on Intelligent Integration and Use of Text, Image, Video, and Audio Corpora, Stanford, Calif, USA, March 1997.

[7] Z. Liu, J. Huang, Y. Wang, and I. T. Chen, *Audio feature extraction and analysis for scene classification*, in Proceedings of the 1st IEEE Workshop on Multimedia Signal Processing (MMSP '97), pp. 343–348, Princeton, NJ, USA, June 1997.

[8] T. Zhang and C.-C. J. Kuo, *Hierarchical classification of audio data for archiving and retrieving*, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '99), vol. 6, pp. 3001–3004, Phoenix, Ariz, USA, March 1999.

[9] G. Williams and D. P. W. Ellis, *Speech/music discrimination based on posterior probability features,* in Proceedings of the 6th European Conference on Speech Communication and Technology (EUROSPEECH '99), pp. 687–690, Budapest, Hungary, September 1999.

[10] K. El-Maleh, M. Klein, G. Petrucci, and P. Kabal, *Speech/music discrimination for multimedia applications,* in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '00), vol. 6, pp. 2445–2448, Istanbul, Turkey, June 2000.

[11] A. Bugatti, A. Flammini, and P. Migliorati, *Audio classification in speech and music: a comparison between a statistical and a neural approach*, EURASIP Journal on Applied Signal Processing, vol. 2002, no. 4, pp. 372–378, 2002.

 [12] L. Lu, H.-J. Zhang, and H. Jiang, *Content analysis for audio classification and segmentation*, IEEE Transactions on Speech and Audio Processing, vol. 10, no. 7, pp. 504–516, 2002. [13] J. Ajmera, I. McCowan, and H. Bourlard, *Speech/music segmentation using entropy and dynamism features in a HMM classification framework*, Speech Communication, vol. 40, no. 3, pp. 351-363, 2003.

[14] J. J. Burred and A. Lerch, *Hierarchical automatic audio signal classification*, Journal of the Audio Engineering Society, vol. 52, no. 7-8, pp. 724–739, 2004.

[15] J. G. A. Barbedo and A. Lopes, *A robust and computationally efficient speech/music discriminator*, Journal of the Audio Engineering Society, vol. 54, no. 7-8, pp. 571–588, 2006.

[16] J. E. Mu<sup>°</sup>noz-Exp ' osito, S. G. Gal'an, N. R. Reyes, P. V. Candeas, and F. R. Pe<sup>°</sup>na, *A fuzzy rules-based speech/music discrimination approach for intelligent audio coding over the Internet*, in Proceedings of the 120th Audio Engineering Society Convention (AES '06), Paris, France, May 2006, paper number 6676.

[17] E. Alexandre, M. Rosa, L. Caudra, and R. Gil-Pita, *Application of Fisher linear discriminant analysis to speech/music classification*, in Proceedings of the 120th Audio Engineering Society Convention (AES '06), Paris, France, May 2006, paper number 6678

[18] F. Pachet and D. Cazaly, *A taxonomy of musical genres*, RIAO '00: Content-Based Multimedia Information Access, 2000.

[19] B. Logan, *Mel-Frequency Cepstral Coefficients for music modeling*, ISMIR '00: International Symposium on Music Information Retrieval, 2000.

[20] D. Turnbull, *Automatic music annotation*, Department of Computer Science, UC San Diego, 2005.

[21] Mangatune. <u>http://tagatune.org/Magnatagatune.html</u> (Visited on 2012/01/23).

[22] MARSYAS. <u>http://marsyas.info/</u> (Visited on 2012/01/23).

[23] WEKA. http://www.cs.waikato.ac.nz/ml/weka/ (Visited on 2012/01/23).

[24] <u>http://www2.cs.uregina.ca/~hamilton/courses/831/notes/confusion matrix/confusion matrix.</u> <u>html</u>.