ISSN 2066 - 8562

TOWARDS NANO-SCALE RESONANT GAS SENSORS

Cornel COBIANU¹, Bogdan SERBAN², Violeta PETRESCU³, Julia PETTINE³, Devrez KARABACAK³, Peter OFFERMAN³, Sywert BRONGERSMA³, Vladimir CHERMAN⁴, Silvia ARMINI⁴, Faezeh ARAB HASSANI⁵, M.A. GHIASS⁵, Yoshishige TSUCHIYA⁵, Hiroshi MIZUTA⁵, Cecilia DUPRE⁶, Laurent DURAFFOURG⁶, Alexandra KOUMELA⁶, Denis MERCIER⁶, Eric OLLIER⁶, Dimitrios TSAMADOS⁷ and Adrian M. IONESCU⁷

Abstract. In this paper, we present preliminary results in the field of resonant Nano-Electro-Mechanical Systems (NEMS), where the gas/bio detection is performed by the frequency shift due to mass loading of the adsorbed analyte. The sensitivity of the resonant NEMS chemical sensors based on SOI-CMOSFET technology platform and a given sensor geometry is theoretically proven to be equal to 1 Hz/zeptogram in mass loading for the case of a novel detector circuit based on MOSFET transistor. The minimum frequency shift of 1 ppm is designed for the case of an readout consisting of a MEMS/NEMS based oscillator. Piezoresistive detection circuits performed in SOI-CMOSFET technology are also investigated due to their attractiveness for integrated resonant NEMS sensors. Surface functionalization for NO₂ detection with CNT moieties is described, in accordance with the HSAB theory. Also, localized functionalization with NH_2 self-assembled monolayer followed by biotin attachment or Au nanoparticles decoration is experimentally proven within SOI-CMOS technology. Novel reliability challenges due to Wan Der Waals and Casimir forces acting in the nanometer gaps between different parts are identified. Finally, the noise limitations for the minimum detectable mass in resonant NEMS are shown. The adsorption-desorption noise on the functionalized surface appears to be the most important, and this may be in agreement with the kinetic theory of gases giving us a first indication of the number collisions per second per our sensing surface, in the range of $2 \cdot 10^9$.

Keywords: surface functionalization, resonant gas sensor, integrated NEMS, NO2 detection

³Stichting IMEC, Eindhoven, The Netherlands.

¹Honeywell Romania, Sensors and Wireless Laboratory, Bucharest, Romania; corresponding member of The Academy of Romanian Scientists.

²Honeywell Romania, Sensors and Wireless Laboratory, Bucharest, Romania.

⁴IMEC, Leuven, Belgium.

⁵University of Southampton, Southampton, United Kingdom.

⁶Laboratoire d'Electronique et de Technologie de l'Information, Grenoble, France.

⁷Ecole Polytechnique Fédérale de Lausanne, Suisse.