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Rezumat. Această lucrare prezintă o nouă abordare, bazată pe un model de ecuaţii cu 

derivate parţiale (EDP), pentru modelarea analogică şi simularea numerică a proceselor 

biomedicale cu parametrii distribuiţi. Astfel de procese redau penetrarea radiaţiilor în 

radioterapie sau în tehnicile de investigare radiologică. Studiul de faţă simulează 

propagarea prin diferite medii. O caracteristică importantă a metodei propuse este aceea 

de a simula propagarea prin medii neomogene, cum ar fi ţesuturile umane. Lucrarea 

oferă un punct de plecare în tehnica controlului automat al dispozitivelor radiologice. 

Abstract. This paper presents a novel approach, based on a partial differential equation 

(PDE) model, for analogical modeling and digital simulation of biomedical processes with 

distributed parameters. Such processes include penetration of radiation during radiation 

therapy or radiological imaging techniques. The present study simulates the propagation of 

radiation through different media. A valuable feature of the proposed method is its ability to 

simulate propagation along inhomogeneous media such as human tissues. It offers a 

starting point for automated control of radiological devices. 

Keywords: partial differential equations, distributed parameters, radiation field, propagation 

1. Introduction 

Medical research and practice offers numerous applications for numerical 

simulation [1-4]. One such application, automated control of radiation field 

intensity generated during radiation therapy, constitutes an efficient method to 

reduce unnecessary radiation exposure for both patient and device operator [5, 6]. 

The aim of our study has been to develop a model for radiation field control at 

various tissue locations investigated or treated using radiological devices. 

The phenomenon of radiological field spreading is represented on Cartesian 

coordinate system (0p; 0q; 0r) in figure 1. A possible pattern of spread is 

considered, particularly in relation to these axes and in relation to time (t). The 

radiation field intensity y(t, p, q, r) is shown in figures 1b, 1c, and 1d, in which: 
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The following variables and function were considered in a Cartesian space: 
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Fig. 1. Representation of radiation field intensity,  y(t, p, q, r) in Cartesian coordinate system: 

a. Cartesian system b. y on 0p axis c. y on 0q axis; d. y on 0r axis. 
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The axes (0p) and (0q) define the horizontal plane, in which the field generator is 

located. Field intensity expressed in (1), and axis (0r) correspond to the depth of 

field propagation. The constants in (4), (5), (6) can be approximated by expert 

procedures, namely:  
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where the final abscises )(),(),(
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p  correspond to negligible values (for 

example ≤ 0.05).  

For )(),( 00 qFpF QP , )(0 rF R , the abscises )(),(),(
d
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p  may show 

perturbations (discontinuities in tissue structure), estimated by: 
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Therefore, )(0 sF S  can also be written:  
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The results of )(0 sF S  from (4), (10), (13) and (14) also represent spatial curves 

deformed by multiple degrees of freedom, for example )(),( SS  and )( fs , 

while the “length constants” (P…), (Q…) and (R…) may exhibit “inertia” or 

“attenuation” of radiological propagation in a tissue.  

Function components )(),( 00 qFpF QP or )(0 rF R can be approximated by: 
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in which the variable (v) can be (p), (q) or (r), by case. 
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The disturbance index (d) refers to the homogeneity disturbance due to tissue 

heterogeneity located on the abscissa )( dv , while )( vdA  in (16) represents the 

amplitude of heterogeneity illustrated in figure 2.a. 

 

Fig. 2. Tissue heterogeneity may lead to homogeneity disturbances of field intensity: 

a. Amplitude b. Trajectory in Cartesian space. 

By convenient choice of the parameter )( vdK  a more or less steep (and 

symmetrical) slope can be ensured. In figure 5b, the deformation effect of 

function )(0 vF vd  on the right abscissa )( dv over the component )(
0

vF
v

can be 

seen. If, with respect to time, the spread of radiological field intensity y(t,p,q,r) 

was identical on all three axes (0p), (0q) and (0r) in figures 1b, 1c and 1d, then: 

 )()()()( 0000 tFtFtFtF TTrTqTp   (17) 

which may also be approximated as a customary form of step response, in relation 

to the control signal )(tu applied to the  radiological source. Thus: 
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Fig. 3. Transient phenomenon. 
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The length )( ft of this transient phenomenon (figure 3) reflects a radiation 

propagation inertia, identical on axes (p, q, r, s) for which ftt   tends to the 

unitary asymptote. 

For this slow or fast ascending evolution we considered 1,64  TT  , 

resulting in the following time constants: 
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where (ti) is the moment corresponding to the inflexion )(0 itF  . 

It can be seen in figures 1b, 1c, 1d, and 2 that the final values ),,,( ffff vrqp  

show the depth of the radiological penetration which depends on the control signal 

and on the more or less homogeneous structure of the environment (tissue).  

If this spread inertia is different in relation to the axes, then condition (17) is not 

accomplished, resulting in: 

 )()()( 000 tFtFtF TrTqTp   (20) 

In this case, formally identical to relation (19), each axis will exhibit:  
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where (t…f), (μT…) and (λT…) are specifically established for each axis. 

To transform into Cartesian coordinates it can be shown that: 
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finally resulting in: 
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which are the equivalent time constants of the Cartesian space, assuming that 

inertial propagations are different along the three axes (p, q, r).  

Following this method, F0T(t) from (1) becomes: 
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which together with SF0 (s) from (10), allows the establishment of the radiological 

field intensity from figure (1), 

 )(),()](,,[ 00000 tustFKtusty Sy  , (27) 

where )()(),( 0000 sFtFstF ST  and ( yK ) is a weighting coefficient. 

 

Fig. 4. FOT and FOS variations. 

For the two functions 
0T

F (t) and SF0 (s) exemplified in Cartesian space in figure 

(4), the relations become obvious:  

 222

rfqfpff tttt  ;  222

ffff rqps   ;  
222

dddd rqps  , (28) 

as they were given in figures 1b, 1c, 1d and 2. 

2. Analogical modeling of the proposed adjustment scheme 

In figure 5 a block diagram for adjusting the radiological field with components 

modeled by algebraic and differential (29), (30), and partial differential equations 

(31) is presented.  
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Fig. 5. Block diagram of the proposed adjustment scheme. 

 omwa  00 ;   1000 mTmyK mm   (29) 

 21210 cTcaKaKaK RDRPRIR  ;   100 uTucK EE   (30) 

 020211112020010110100000 yayayayayaya  

 )( 200.2100.1000.0 SSSy uuuK    (31) 

The indexes in relations (29), (30) and the first parameter from relation (31), 

correspond to the order of derivative with respect to time (t), and the second 

parameter from (31) corresponds to the order of derivative with respect to variable 

(s) defined in relation (2). Considering the example: 
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the radiological field ( 00y ) defined in (26) is converted into electrical signal ( 0m ) 

by the measurement transducer M from (29).  

The control error ( 0a ) results from (29), where ( 0w ) is the reference signal. The R 

controller with PID behavior from (30) is emitting a control signal ( 0c ), applied to 

the electromagnetic field generator E (microwave), also defined in relation (30). 

The radiation emitting unit, E, generates the execution signal ( 0u ) representing the 

incident radiological field which is applied to the propagation environments (e.g. 

air, tissues) together with a possible resultant perturbation signal (ữ0), resulting in: 

  00 uuS  ữ0 (32) 

In this case (ữ0) corresponds to the homogeneity perturbation Fovd(v) from (16), 

where v = sd found in (28). 

Thus, the complex phenomenon of radiological propagation is estimated by partial 

differential equation (31). In the left member of this equation we introduced the 
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approximated solution (27), resulting in the right member:  

 
0.00 00 00 10 10 01 01 20 20 11 11 02 02

a F a F a F a F a F a F              (33) 

 01111020001000.01 2 FaFaFa   (34) 

 002000.2 Fa   (35) 

in which partial derivatives ( ...0F ), ( 11F ) and ( 0...F ) are obtained from relation (27). 

Only signal ( 0u ) is included in the block diagram. The disturbance (ữ0) is an 

independent external signal. 

 From the equation system (28)…(31), the matrix with partial derivatives 

of the state vector (Mdpx) represented in (36) has been deduced for the entire 

regulation system in figure 5. In (36), the state vector x has the following 

transposed form: 

 

Because the signals m = m(t), c = c(t) and u = u(t) are functions only of time, all 

their partial derivatives with respect to (s) are equal to zero. Details concerning 

the preparation and analogical modeling of systems through  dpxM  may be found 

in [7, 8].  In our case, (Mdpx) from (36) is composed by:  

  18x  state vector, 

  68Sx  state vector derivative with respect to variable (s), 

  120Tx  state vector derivative with respect to variable (t), 

  620TSx , state vector derivative with respect to variables (t) and (s). 

3. Numerical simulation by  dpx
M  and Taylor series 

Numerical simulation requires knowledge of initial conditions CI(t0,s), for 

10 ),(  kCI xstxx , from which results by partial derivative with respect to (s):  

1,0, ),(  kSsCIS xstxx  

in which sequence (k  1) corresponds to the moment tktk  )1(1 , and 

sequence (k) corresponds to tktk  , where ( t ) is a sufficiently small 

integration step.  

Using  CIx  and  CISx ,  above, we computed using specific operations based on 

symbolic derivatives by indices, the composing elements of  Tx  and  TSx  

resulting in:  
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  1,0, ,  kTTCIT xstxx  and   stxx TSCITS ,0, 1, kTSx . 

 

After these preliminaries regarding the initial conditions, we approximated 

through iterative calculation steps,  
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At each integration step ( t ) we operated with a number of 20 Taylor series, of 

which 6 for ( kkkkk uccmm 01010 ,,,, , ku1 ) and 14 for ( kkk yyy 060100 ,...,, ). 
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It can be observed that 8 elements (signals) included in Taylor series are from the 

state vector component  x  and the other 12 are from the matrix component  Sx , 

each one included in  dpxM .  

The truncation error at each integration step ( t ) is proportional to


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( 00,,, yucm ), as well as to 
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4. Case studies 

4.1. Preliminaries  

a) The radiological field spread has been estimated by the following parameters: 
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By 0q axis:  
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By 0r axis: 
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According to (24, 25), it resulted:  

85,1;711,1;321,4 1  T   and .16,32 T  

According to (11, 12), it resulted: 

;445,1;416.4  SS   71,41 S ; .81,62 S  
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b) The structure parameters, and the equation coefficients of the system (29, 30) 

were: 

 05,0;06,0;1;055,0;1  RrErEMM TTTKKTK  

 





TK

TT
K

Ex
PR

2

21 ;   



TK

K
Ex

TR
2

1
;   

TK

TT
K

Ex
DR






2

21  (38) 

 MER TTTT   

By convenient choice of ( ExK ), a flexible controller PID for relation (29) shown 

in Tables 2 and 3 has been ensured. 

The intensity field X-ray reference signal ( 0w ) and the perturbation signal (ữ0) in 

figure 5, present a continuous component on top of which periodic components 

may overlap. 

c) The analogical model for the spread of the radiological field expressed by the 

second order partial differential equation in (31) presents the coefficients: 

 ;848,5;012,5;1 2120211000  TTaTTaa  

 ;112101  SSa  

 75,57)()(;08,32 2121112102  SSTTaSSa . 

The proportionality coefficient 1yK , may be altered over large limits, since the 

variables presented in figures 1b, 1c, 1d, 2, 3 and 4, are asymptotic or non-

asymptotic between 0 and 1. 

4.2. Case study 1: System behavior in open loop 

The control system in figure 5 may be considered in stopped reaction, 

respectively, 00 m .  

The R controller and the radiological field generator ensure a unitary transfer with 

a negligible delay of the reference signal 0000 ucaw  .  

The radiological field E generated by the control signal ( 0u ) develops inside a 

propagation space an intensity )](,,[ 000 tusty S , representing the solution of partial 

differential equation (31). 

Table 1 presents the evolution of the intensity of the above radiological field 

( 00y ), with respect to time (t), with 100 w , for 11 points from a Cartesian space, 

respectively (0,0,0),…( fff rqp ,, ).  
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Table 1. Intensities of the simulated radiological field in open loop 

p q r t = 10-2 1 3 5 7 9 12 15 18 22 

0 0 0 10-6 0,65 3.47 5.98 7.68 8.71 9.48 9.79 9.90 9.965 

0.1∙pf 0.1∙qf 0.1∙rf 10-6 0.51 2.68 4.64 5.95 6.75 7.34 7.59 7.68 7.73 

0.2∙pf 0.2∙qf 0.2∙rf 10-5 0.43 2.29 3.96 5.08 5.76 6.27 6.48 6.56 6.60 

0.3∙pf 0.3∙qf 0.3∙rf 10-4 1.63 8.64 14.9 19.14 21.7 23.6 24.4 24.7 24.84 

0.4∙pf 0.4∙qf 0.4∙rf 5∙10-6 0.123 0.653 1.127 1.44 1.64 1.78 1.845 1.87 1.88 

0.5∙pf 0.5∙qf 0.5∙rf 10-7 0.044 0.233 0.403 0.517 0.586 0.638 0.660 0.667 0.671 

0.6∙pf 0.6∙qf 0.6∙rf 4∙10-8 0.022 0.115 0.198 0.255 0.289 0.315 0.325 0.329 0.331 

0.7∙pf 0.7∙qf 0.7∙rf 2∙10-8 0.010 0.056 0.097 0.124 0.141 0.153 0.159 0.160 0.161 

0.8∙pf 0.8∙qf 0.8∙rf 10-8 0.005 0.027 0.047 0.06 0.068 0.074 0.076 0.077 0.078 

0.9∙pf 0.9∙qf 0.9∙rf 5∙10-9 0.002 0.013 0.022 0.029 0.032 0.035 0.036 0.037 0.037 

pf qf rf 2∙10-9 1∙10-3 6∙10-3 1∙10-2 0.013 0.015 0.017 0.0176 0.0178 0.186 

0; 1; 10; 1; 0; 0; 15; 22
M v A PR IR DR EX f

K K w K K K K t         

It may be observed that in the near vicinity of the radiation source application 

point, (0,0,0), the radiological field intensity ( 00y ) has a maximum value, 

presenting an exponential evolution which tends asymptotically towards the 

references value 100 w . The further away we move from the source, towards 

the final penetration depth ( fff rqp ,, ), the more the radiological field intensity 

( 00y ) decreases.  

The ( fff rqp  3,0;3,0;3,0 ) point corresponds to a structure perturbation 

( ddd rqp ,, ), for which the intensity (y00) presents a remarkable discontinuity, in 

conformity with figure 2, relation (16) and figure 4. It may arbitrarily be 

considered that this discontinuity presents a “zoom effect”, by concentrating 

radiological field intensity (y00). Of course the opposite may also be considered, if 

in (24) the amplitude 0vdA . 

4.3. Case study 2: System behavior in control loop 

In this case, the transducer M of radiological field intensity  00y  achieves a 

control error mwa  , using the measured signal  m  and a reference signal  w , 

which is processed by the R controller, with PID structure. Through the transfer 

function of the regulator,  
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 (39) 

the three effects: proportional PRK , integration IRK  and derivative DRK , can be 

modified over large limits if the EXK  coefficient is wisely chosen from (38).  

Table 2 presents the evolution of the radiological field intensity  00y , with 

respect to time  t , with 5w , for the same 11 points of the Cartesian space. By 

convenient adjustment of the controller R, an intensity 500 y  was ensured in 

steady state regime.  

For ;1;1  vM KK  5w ; 22ft ; EXK  conveniently chosen to 

ensure 500 y  in steady state regime, the evolution is non-periodically ascending 

towards 500 y , at 22ft . The values of curves are identical, which means 

that the numerical simulation stages have been performed correctly.  

The only exception corresponds to the perturbation point 

 fff rqp 3,0,3,0,3,0 , where the “zoom effect” of  00y  presents a slight peak, 

at 6.45, then returning to the same asymptote 500 y . 

In this perturbation regime, the relatively small value of 282,0EXK  constrained 

an important growth of the PID controller effects.  

Table 2. Intensities of the simulated radiological field in control loop  

p q r y00 KEX t=10-2 1 3 5 7 9 12 15 18 22 

0 0 0 y00A 15 6107 0.33 1.76 3.03 3.88 4.38 4.76 4.91 4.97 4.999 

0.1 pf 0.1 qf 0.1 rf  y00B 11.6 6107 0.33 1.76 3.03 3.88 4.39 4.76 4.91 4.97 4.999 

0.2 pf 0.2 qf 0.2 rf y00C 11.4 1105 0.33 1.756 3.02 3.87 4.39 4.77 4.92 4.98 5.002 

0.3 pf 0.3 qf 0.3 rf y00D 0.282 2104 2.28 5.62 6.45 6.33 5.99 5.54 5.27 5.13 5.05 

0.4 pf 0.4 qf 0.4 rf y00E 2.25 5106 0.33 1.758 3.03 3.88 4.38 4.76 4.91 4.97 4.998 

0.5 pf 0.5 qf 0.5 rf y00F 1.01 6107 0.33 1.76 3.03 3.88 4.38 4.76 4.91 4.97 4.997 

0.6 pf 0.6 qf 0.6 rf y00G 0.500 6107 0.33 1.757 3.02 3.87 4.38 4.76 4.91 4.97 4.996 

0.7 pf 0.7 qf 0.7 rf y00H 0.245 6107 0.33 1.751 3.02 3.87 4.37 4.76 4.91 4.97 4.999 

0.8 pf 0.8 qf 0.8 rf y00I 0.117 6107 0.33 1.765 3.03 3.88 4.39 4.77 4.92 4.97 4.999 

0.9 pf 0.9 qf 0.9 rf y00J 0.057 6107 0.33 1.75 3.01 3.86 4.37 4.75 4.90 4.97 4.994 

pf qf rf y00K 0.027 6107 0.33 1.76 3.03 3.88 4.39 4.76 4.92 4.97 4.998 
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Thus, a constant value of field intensity at   500 fty  in steady state regime, for 

reference 5w , over all 11 points Ay00 , By00 ,…, Ky00  has been ensured. 

Table 3. Influence of the KEX coefficient on the R controller  

00y  EXK  PRK  IRK  DR
K   fty00  








f
t

S
u  

Ay00  15 1.0125 0.202 1.181 4.999 5.009 

By00  11.6 1.309 0.261 1.527 4.999 6.464 

Cy00  11.4 1.332 0.266 1.554 5.002 10.68 

Dy00  0.282 53.86 10.74 62.84 5.05 19.69 

Ey00  2.25 6.750 1.345 7.876 4.998 37.51 

Fy00  1.01 15.037 3.00 17.546 4.997 74.45 

Gy00  0.500 30.37 6.06 35.44 4.996 150.71 

Hy00  0.245 62 12.37 72.33 4.995 308.94 

Iy00  0.117 129.8 25.9 151.46 4.999 639.7 

Jy00  0.057 266.4 53.16 310.9 4.994 1329.8 

Ky00  0.027 562.5 112.2 656.35 4.998 2781 

The further the M transducer is placed from the radiological field-generating 

device, the more intense the three effects of the controller, resulting in larger 

,
PR IR DR

K K and K  coefficients.  

Near the structural discontinuity, corresponding to the Dy00  concentration, the 

controller ensures the attenuation of the resulting perturbation, by constraining 

larger values for the three PID  effects.  

In a stationary regime   500 fty , the execution signals  fS tu  present roughly 

uniform increasing values, for progressively increasing distance of the transducer 

M  from the field generating device.  
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Conclusions 

The paper studies a modeling approach of a radiological propagation process, 

based on a system of three differential equations and a partial derivative equation 

(PDE) with three space variables and one time variable.  

For analogical modeling it operates using the matrix of partial derivatives for the 

state vector dpxM , associated with Taylor series for computational simulation.  

A controller  R  can be tuned in order to ensure the control of radiological field 

intensity at different points where field sensors and transducers are located. 

Multiple degrees of freedom can be ensured using structural parameters of the 

model and external elements such as the above mentioned controller, transducers 

and sensors. Altering of environmental propagation can be distinguished using 

structural parameters  ....  and  .... , in time as well as in space. 

The model accounts for the presence of structural tissue discontinuity. Specific 

time-space dynamics are taken into account for each space axis ( , , )
p q r

O O O . 

Units of measurement for length  rqp ,, , time  t , execution signals  u , 

radiation intensity  y  and other parameters may be chosen as needed, but will 

only be valid for each individual case study. 

The PDE model may be adapted for various processes of radiation or thermal 

propagation, with applications in both medical diagnosis and treatment.  
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