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Rezumat. În lucrare se analizează propagarea impulsurilor temporale intr-un strat 

dielectric subţire neliniar constând dintr-un material dispersiv neomogen, în pre-

zenţa efectelor de rezonanţă. Am aplicat o metoda perturbaţională şi cu ajutorul 

acesteia am obţinut soluţii solitonice de tip anvelopă, stabilind astfel condiţiile de 

existenţă a solitonilor strălucitori şi respectiv întunecaţi cu ajutorul coeficienţilor 

ecuaţiei Schrödinger neliniare şi al relaţiei de dispersie a undei cuasiplane. Aceste 

rezultate teoretice au fost aplicate în cazul unei structuri dielectrice planare cu 

SiO2. În acest caz am arătat că în vecinătatea frecvenţei de rezonanţă şi a frecvenţei 

de tăiere superioare solitonii încetează de a mai fi impulsuri scurte temporal. 

Abstract. In this paper we have analyzed the propagation of short temporal pulses 

in a nonlinear dielectric thin layer consisting of an inhomogeneous dispersive 

material in the presence of the resonance effects. We used a perturbational method 

and we obtained envelope solitons. Thus, we have established the existence 

conditions for the bright and dark solitons from the nonlinear Schrödinger equation 

coefficients by using a cuasiplanar wave dispersion relation. The theoretical results 

have been applied in the case of a typical SiO2 slab. Consequently, we have shown 

that in the vicinity of the resonance frequency and the upper cut-off frequency, the 

solitons cease to be temporally sharp pulses. 

Keywords: Solitons, planar waveguides, nonlinear Schrödinger equation, perturbations theory 

1. Introduction 

In this paper we analyze the propagation of the pulses in a dispersive Kerr-type 

medium, represented by an infinitely long dielectric, without losses and with a 

parabolic profile of the refractive index. Our analysis has the following stages: 

a. The effects of the transversal inhomogeneities are decoupled from the 

longitudinal propagation in the planar dielectric medium. This is achieved by an 

averaging method, thus obtaining in the monomodal case a nonlinear wave 

equation describing the longitudinal propagation of the pulses. 

b. We consider all the harmonics generated by the nonlinearity by 

expanding the unknown function in a power series of the   parameter ( 1 ). 
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We analyze the case of the temporally short pulses, for which the parameter   is 

given by the ratio between the spectral width   and the carrier angular 

frequency  . 

c. We establish the integrability conditions for the order of  , thus 

obtaining the corresponding group velocity expression and the dispersion 

relations. 

From the integrability conditions corresponding to  3O  we establish the 

nonlinear Schrödinger equation (NLS). 

By means of NLS we establish the conditions leading to the generation of bright 

and dark solitons in the presence of the medium dispersion. 

2. Theoretical model 

 a. The refractive index  xn , where x  is the transverse coordinate, is 

given by: 

 
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where 1n  is the linear refractive index for 0x ,   101 / nnn   is the relative 

variation of the film refractive index with respect to that of the coating; eK  is the 

Kerr coefficient and E  is the electric field intensity vector. 

Expression (1) is valid as long as the resonant effects can be neglected.  

The resonance effects denoted by LP  can be described as a linear contribution to 

the polarization vector   EnP xL 12
0   , and are given by a convolution 

integral: 

     tzxEttzzbzzdtdzP

tz

L  


,,';''''0   (2)  

0  is the dielectric constant of the vacuum,    is the delta function, expressing 

the spatial homogeneity along z -axis, and  tzb ,  is the anomalous part of the 

response function of the dispersive medium. 

Considering the even TE mode case with  tzxEjE y ,,  and using the Maxwell 

equations, we get the following wave equation: 
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where LP = LP . 

In the linear case and in the absence of the resonance effects  0,0  Le PK , 

the solution of equation (3) can be expressed as Hermite polynomials depending 

of the transverse coordinate x . For the linear monomode case, yE  becomes: 

      ztiwxEtzxEy 00
22

0 exp/exp,,    (4) 

where 0E  is the normalizing constant, 0  is the angular frequency, w  is the 

beam radius and 0  is the wave vector in the considered medium.  

In the nonlinear case, the effects of the transverse inhomogeneities are taken into 

account by averaging. Thus, taking  tzxEy ,,  as: 

     22 /exp,,, wxtzUtzxEy   (5) 

after applying an averaging method, we get the following onedimensional 

nonlinear wave equation: 
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b. The perturbational method 

Suppose that the unknown function  tzU ,  can be expanded by the powers of the 

  parameter  1 : 
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where k  is the wave number,   is the angular frequency and the summation is 

made for all the harmonics generated by the nonlinear response of the 

polarization. 
a
l

U  is the envelope of the l -th harmonics of the approximation of 

order a , slowly varying with z and t . 

The variables   and   are defined by the following scaling relations: 


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z
tz  ,2  (8) 

where gv  is the group velocity. 

From relations (6) – (8) we get the following equation for the l -th component 

  ,a
l

U : 

 (9) 

where    dnkp 10/2/  and kb ,  is the Laplace transform of  tzb ,  

function). 

In order to separate different orders of  , we introduce the following operator: 
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Finally we get: 

- third order: 

 (11) 

c. Integrability conditions 

From (11) we obtain the integrability conditions for  3O : 
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Equation (14) is a nonlinear Schrödinger-like equation, whose analysis is useful in 

establishing the conditions for the generation of bright and dark solitons. 

By means of relations (10) and (14) for one mode propagation, we get: 
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When the resonance effects can be neglected,  b  0 , equation (15) becomes: 
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The relation (15) can be written under the form: 
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e  is the resonance frequency of the function b , and U0  is the initial amplitude 

of the pulse. 

From relation (18) we can establish the conditions for the generation of bright and 

dark solitons, respectively. 

In order to characterize the pulse width we introduce the following parameter: 
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named characteristic frequency, and being correlated to the temporal width of the 

pulse. 

In the absence of the resonance effects  b  0  because   is always positive and 

1 1 1
- -1

2 2

 
 
   

2
f

2
g g

k
=

ωω

v

v v
 (21) 

is negative  0 v vf g , it results that the equation (16) has only bright solitons 

solutions. 
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3. Analysis of the bright and dark solitons generation conditions in a planar  

dielectrical structure 

Suppose that the function b z t( , ) is given by: 

b z t b t t
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and consequently the function b k ,  is of the form: 
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In this case, b  corresponds to the real part of the electric susceptibility and e  

and p  are the electric dipole resonance frequency and the electronic plasma 

frequency, respectively. 

By means of the expression of b , we can obtain the dispersion relation L=0 

under the form: 
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In order to calculate the characteristic frequency 0  and establish its sign we use 

the relation (24) under the form: 
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where s  and i  are the upper and lower cut-off frequencies respectively: 
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For the cuasiplanar wave approximation, the propagation is possible when 

1i  or s . 
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When resonance is neglected, the waves propagate when i , the dispersion 

relation becoming: 

    2/1222/1
1 )1( ipnK      (27) 

and due to the fact the upper cut-off frequency becomes equal to 1, we get: 
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
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
.     (28) 

Because 0  is always negative it follows that equation (18) will have only bright 

soliton-like solutions. 

In figures 1 and 2 the characteristic frequency 0  is represented as a function of 

the normalized frequency   and of the normalized wave vector K respectively. 

Fig. 1. Characteristic frequency Ω0 dependence on normalized frequency Ω for bright and dark 

solitons case. 

The positive values (dark solitons) and the negative values (bright solitons) of 0  

are shown by the fine dashed lines and by solid lines respectively. 

The long dashed lines refer to the case of the resonanceless dispersion; in this case 

the absolute value of 0  behaves like a linear function of   and of K 

respectively for values of   much larger than the cut-off frequency 

  i s  1 . 
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If the resonance effects are present, then we must take into consideration the 

upper cut-off frequency   s s  1  and the resonance frequency   1. 

The graphs have been drawn for planar SiO2 media, the parameters being properly 

chosen to permit the propagation of a single mode, namely: dielectric film 

thickness d  2 m ; the relative variation of the core refractive index with respect 

to that of the cover,   0 01, ; the vacuum wavelength, 2 0 5880 k  , m . 

The electric dipole resonance frequency is 20358 THz and the electron plasma 

frequency is 21321 THz. 

The corresponding normalized cut-off frequencies are i   8 62 10 3,  and 

s  1 23,  respectively. 

Fig. 2. Characteristic frequency Ω0  dependence on normalized wave vector K for bright and dark 

solitons case.
 

From figures 1 and 2 we noticed the existence of a normalized transition 

frequency t , around which the characteristic parameter 0  has high values, 

which implies the fact that solitons with short temporal width propagate in the 

vicinity of that frequency. 

It is significant the fact that nature of solitons changes when passing through the 

transition frequency, namely from bright solitons to dark ones. 

Dark solitons propagation takes place within the frequency range between the 

transition frequency t  and the resonance one   1. 
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The temporal width of the temporal “kink”-like solitons increases far from the 

transition frequency t  and rapidly decreases when   approaches the resonance 

value   1. 

On the other side, the bright solitons have narrow width only for frequencies 

much larger than the cut-off frequencies i  and s .  

Conclusions 

It has been shown that in the absence of the resonance effects in the planar 

waveguide material only bright soliton-like solutions exist. 

For short temporal pulses a bright-to-dark solitons transition occurs at a critical 

frequency t . 

However, at the frequency s    s   or at resonance    1  the bright and 

dark soliton solutions are not short temporal pulses any longer, due to the rapid 

decrease of their characteristic frequency 0 . 

In conclusion, the existence of a bright-to-dark solitons transition at the frequency 

t , lying between the lower cut-off frequency i  and the upper one s  is a 

characteristic feature of the short temporal pulses evolution and it is due to the 

presence of the resonant dispersive properties of the dielectric medium. 
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