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Abstract. Despite computational superiorities, some traditional conjugate gradient 

algorithms such as Polak–Ribiére–Polyak and Hestenes–Stiefel methods generally fail to 

guarantee the descent condition. Here, in a matrix viewpoint, spectral versions of such 

methods are developed which fulfill the descent condition. The convergence of the given 

spectral algorithms is argued briefly. Afterwards, we propose an improved version of the 

nonnegative matrix factorization problem by adding penalty terms to the model, for 

controlling the condition number of one of the factorization elements. Finally, the 

computational merits of the method are examined using a set of CUTEr test problems as 

well as some random nonnegative matrix factorization models. The results typically agree 

with our analytical spectrum. 

 

Keywords: Unconstrained optimization, conjugate gradient method, spectral method, rank-

one update, nonnegative matrix factorization. 

 

DOI   10.56082/annalsarsciinfo.2024.1.35 

1. Introduction  

Scholar studies show that the introduction of conjugate gradient (CG) methods 

made a revolution in the field of numerical optimization. Requiring low memory 

and having simple iterations besides acceptable convergence, the methods have 

been extensively utilized in practical disciplines such as signal processing, 

machine learning, and neural networks training, which often appear in large-scale 

models. 

For solving the minimization problem  with a smooth real-valued 

function , here we focus on the CG methods which their search directions can be 

formulated by 
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, , , (1.1) 

where  is a rank-one update of the identity matrix as follows: 

, (1.2) 

where  are non-zero vector parameters. Notice that  in (1.1) can 

be effectively determined by performing one inner product and storing three -

dimensional vectors. Now, for the iterative method 

, ,  

with some , where  with the step length  fixed by a line 

search [30] along the direction given by (1.1), the choice 

, 

(1.3) 

 

with  and ,  leads to the CG method proposed by 

Hestenes and Stiefel [17] (HS). Also, by setting 

, (1.4) 

 

with  standing for the Euclidean norm, we get the method given by Polak and 

Ribière [23], and Polyak [24] (PRP). 

From this point forward, we enforce the popular strong Wolfe conditions in the 

line search, i.e. 

, (1.5) 

, (1.6) 

Where , ensuring  for the choices (1.3) and (1.4) which is 

required in our future analysis. 

Despite efficiency in the computational viewpoint among the traditional CG 

techniques [3], PRP and HS iterations may generate uphill directions. To combat 

this defect, scholars made extensive efforts to open up modification ways to get 

the descent versions of the methods. In this direction, a fundamental step has been 

taken by developing three-term CG algorithms principally by Zhang, Zhou and Li 

[37, 38]. In another class of modifications, researchers picked up on the thread 

that introduced by Dai and Liao [10] to gain descent extensions of the methods; 

see for example [5, 7, 16]. Spectral extensions of the PRP and HS methods also 
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have attracted significant attention to get the descent property; as examples take a 

look at the analyses carried out by Andrei [4], Dong et al. [12], Wan, Yang and 

Wang [33], Wan et al. [32], Faramarzi and Amini [14], Jian et al. [18], Zhang and 

Dan [39], Du and Liu [13], Wang et al. [34], Yu, Guan and Chen [36], and Sun et 

al. [31]. 

To make progress in the class of spectral HS/PRP algorithms, here we bring 

about change in the classical analyses of the literature in the sense of utilizing 

matrix aspects, as will be discussed in the next section (Section 2). We present our 

modified model for the nonnegative matrix factorization problem in Section 3. We 

share our numerical experiments on a category of benchmark test problems as 

well as some randomly generated cases of the nonnegative matrix factorization 

problem in Section 4. Ultimately, in Section 5 we present the concluding notes. 

2. On a class of spectral descent conjugate gradient algorithms 

Spectral CG algorithms have been principally introduced by Birgin and Martínez 

[8], reporting improved effects on the performance of the methods. Motivated by 

the results of [8], here we use a scalar scaling of the identity matrix in (1.2) as 

, (2.1) 

where the positive scalar is called the spectral parameter, and then, we define 

the spectral CG directions by 

, , . (2.2) 

Now, to avoid generating uphill search directions as an important theoretically 

troubling issue for several traditional CG algorithms with the search direction 

matrix format (1.2), we compute  in (2.1) to gain the descent property. Since 

, and, for all , 

, 
(2.3) 

one possibility is to make the symmetric matrix 

, 
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to be positive definite. So, following the instructions of [6], what it takes is to 

determine the eigenvalues of . 

Since there exists a set of mutually orthogonal vectors being also 

orthogonal to  and , the spectral parameter  is an eigenvalue of with 

the multiplicity . We pursue our analysis with the aim of finding the two 

other eigenvalues of denoted by  and . In this regard, because the trace 

of and the sum of its eigenvalues are equal, we get 

. (2.4) 

On the other hand, since  with  standing for the 

Frobenius norm, being also equal to sum of the squared eigenvalues of , we 

can write 

. (2.5) 

Now, from (2.4) and (2.5), we get 

. (2.6) 

Thus, from (2.4) and (2.6), we should solve the following quadratic equation: 

, 

to determine  and . Indeed, after a series of classic algebraic manipulations, 

we obtain 

.  

As we know, imposing positiveness on the smallest eigenvalue of  makes 

it positive definite. From this fact and since we can see that , next 

we plan to find  in such a way that . So, we should have 

. 
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Thus, as a result of the above analysis, the following class of two-parameter 

choices for  is given: 

, (2.7) 

Where , guaranteeing the descent condition for the spectral CG methods 

with the directions of the general structure (2.2). 

Here, abbreviations SHS and SPRP are used to represent the scaled CG 

algorithms respectively with the choices (1.3) and (1.4) adopted in (2.2), with  

defined by (2.7). For SHS, we establish the following result. 

Lemma 2.1. If in (2.7) we have , for some constant , then 

directions of SHS fulfill the sufficient descent condition, i.e. 

, , (2.8) 

for some . 

Proof. By taking into account the relation (2.3), we get 

. 

Now, from (1.3) we have  which leads to . 

Next, we concisely address the convergence of SHS and SPRP using the routine 

measures of the literature. Henceforth, we suppose that the following assumption 

holds. 

Assumption 2.1. For an arbitrary ,  is a bounded 

set and in some neighborhood  of ,  is Lipschitz continuous; that is, 

, for all , (2.9) 

for some positive constant . 

Now, if f is strongly convex [30] on the neighborhood  of , then, from (2.1), 

(2.2), and (2.9), along with Theorem 1.3.16 of [30], the sequence  of 
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SHS is bounded above. Similarly, for SPRP, if (2.8) holds and  is bounded 

above (ensured by setting , where M is an enough large 

positive constant), from Lemma 3.1 of [37] we get the boundedness of the 

sequence . Eventually, for both of the SHS and SPRP methods with the 

strong Wolfe conditions (1.5) and (1.6), Lemma 3.1 of [29] leads to the 

convergence in the sense of . 

3. An improved model for the nonnegative matrix factorization problem 

Among the key characteristics of the digital era, is the impact of dimensionality 

reduction methodologies on the analysis of large data sets. In recent years, 

nonnegative matrix factorization (NMF) has attracted the attention of many 

researchers as a simple and easily interpretable technique for extracting hidden and 

important features of the data [9, 20, 25, 28, 35]. Classic NMF involves 

(approximately) decomposing an arbitrary matrix  into two matrices 

and  in the sense of , under the assumption that the 

elements of A, W and H are nonnegative and . Considering a 

nonnegative matrix  (i.e.   which means that the entries of  are nonnegative), 

modeling the NMF problem can be accomplished in the following manner: 

, s.t. W, . 

 

(3.1) 

Since being nonconvex, it is a reasonable idea to transform (3.1) into some 

possible convex subproblems, thereby benefiting from the advantages of the 

convex optimization tools. By maintaining one matrix factor constant, the other 

matrix factor can be calculated by solving a least-squares problem. Based on this 

fact, ANLS (alternating nonnegative least-squares) [22] has been traditionally 

regarded as an important approach, technically characterized by solving the 

following two least-squares models alternatively: 

= , (3.2) 

= , (3.3) 

for all , starting by some initial approximations for  and . 
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As known, well-conditioning is an influential issue in the field of matrix 

computations. So, here we focus on the condition number of the (mostly) positive 

definite matrix  of the dimension  in the model (3.1) to possibly 

combat the collinearity between the rows of , and as a result, to achieve the 

computational stability for at least one of the factorization elements. Therefore, 

the following improved version of the NMF model (3.1) is proposed: 

, s.t. W, , (3.4) 

where  is the penalty parameter and  stands for the spectral condition 

number [26, 27]. 

Since generically computing  in the model (3.4) is costly in the 

computational viewpoint as well as the CPU time, diagonal approximations of  

are more preferable. So, we consider 

, 

where 

, i=1 … . 

Notably, the above estimation is derived by 

= , 

where  refers to the collection of all diagonal matrices whose elements 

are nonnegative. In addition, we employ the following function, devised based on 

the relation between the geometric and arithmetic means to assess the condition 

number in (3.4): 

, 
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for an arbitrary positive definite matrix . Consequently, if  (rather 

than ) is applied in (3.4), it is also reasonably probable to approximate  in a 

way that its eigenvalues to be well-distributed. 

As a result of our argument, and especially, in pursuit of the simplicity which is 

vital for large-scale cases, we propose the following modified NMF model: 

. (3.5) 

Additionally, the following revised versions of the least-squares models (3.2) and 

(3.3) should alternately be solved: 

= , 

= , 

for all . The corresponding method here is called improved ANLS (IANLS) 

method as well. Note that the cost function (3.5) reduces to the traditional NMF 

cost function (3.1) when . 

4. Numerical tests 

To show support for our theoretical analysis, here we provide some experimental 

evidence across the computational spectrum. To proceed, we have selected 42 test 

functions of the CUTEr [15] with , as listed in Table 1.  All the tests have 

been performed in MATLAB version 7.14.0.739 (R2012a) installed on a 

computer AMD FX–9800P RADEON R7, with 12 COMPUTE CORES 4C+8G 

2.70 GHz of CPU and 8 GB of RAM, by the Centos 6.2 server Linux operation 

system. Firstly, we have compared the performance of the HS–based techniques 

including the SHS method and the scaled HS method of [19] (PSHS) with . 

Then, we have compared the performance of the PRP–based techniques including 

the SPRP method and the scaled PRP method of [33] (SPRP–WYW). We used the 

approximate Wolfe conditions of [16] with similar settings. The algorithms were 

stopped by similar conditions as given in [2] with . We 

have scrutinized the effect of the parameters a and b in (2.7) on the performance 
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of SHS and SPRP by evaluating the outputs for different choices 

. As a result, we recognized the values =(0.7, 0.6) for 

SHS and SPRP as the best.  

To judge the performance of the algorithms visually, we applied the Dolan–

Moré performance profile [11] following the notations of [2], on the factors of the 

total number of function and gradient evaluations (TNFGE) [16], and the CPU 

time (CPUT). Results of the performance comparisons have been depicted in 

Figures 1 and 2. They confirm that our matrix-based approach can be capable of 

delivering progress for the performance of the traditional CG algorithms such as 

HS and PRP.  

  

(a) TNFGE (b) CPUT 

Figure 1. Performance profile plots for SHS and PSHS 

  

(a) TNFGE (b) CPUT 

Figure 2. Performance profile plots for SPRP and SPRP–WYW 
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Table 1. Test functions information 

Function  Function  

ARGLINA 200 FLETCHCR 1000 

BROYDN7D 5000 FMINSRF2 5625 

DIXMAANA 3000 FMINSURF 5625 

DQRTIC 5000 GENHUMPS 5000 

EG2 1000 MANCINO 100 

ENGVAL1 5000 MOREBV 5000 

EXTROSNB 1000 MSQRTBLS 1024 

FLETCBV2 5000 NCB20B 5000 

PENALTY2 200 NONCVXU2 5000 

PENALTY3 200 SINQUAD 5000 

QUARTC 5000 TOINTGOR 50 

SCHMVETT 5000 BQPGABIM 50 

TOINTGSS 5000 BQPGASIM 50 

VARDIM 200 BRATU1D 5003 

VAREIGVL 50 DMN15102 66 

ARGLINB 200 DMN37143 99 

CURLY30 10000 DRCAV1LQ 4489 

DECONVU 63 DRCAV2LQ 4489 

EIGENALS 2550 DRCAV3LQ 4489 

EIGENBLS 2550 FLETCBV3 5000 

ERRINROS 50 FLETCHBV 5000 

The final part of our experiments is devoted to evaluating the performance of 

SHS and SPRP for the ANLS and IANLS techniques. Setting  in the IALNS 

strategy, we adopted the stopping condition of [21]. Using a uniform distribution, 

test matrices were randomly generated for different dimensions and a similar 

approach was used to estimate the initial NMF elements, based on the suggestions 
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of [1]. Outputs have been reported in Tables 2 and 3, including the condition 

number (Cond) and RelErr, calculated by 

. 

To summarize the outputs, it is noteworthy that condition numbers of  and 

RelErr show that IANLS performs better than ANLS. Therefore, it can be 

concluded that IANLS is capable of producing well-conditioned NMF element  

that are accurate and of acceptable quality. 

5. Conclusions 

Probable uphill search directions may push the traditional conjugate gradient 

algorithms to the brink of default. To defeat such a computationally troubling 

issue, we developed simple spectral versions of the traditional conjugate gradient 

algorithms. Our study is principally based on the matrix aspects, analysing the 

eigenvalue features of the search direction matrix. We concisely addressed the 

convergence of the given methods using the common assumptions in the 

literature. 

The focus of the next part of our research is on making possible modifications to 

a classic optimization model of the nonnegative matrix factorization problem. 

According to the available information, it is a significant problem that frequently 

arises across a wide range of practical contexts. Our improved model attempts to 

rule out the possibility of ill-conditioning in the factorization trajectory by using a 

classical measure function. 

To examine the performance of the given methods, some computational tests 

have been carried out on the CUTEr functions. The outputs have been assessed 

based on the well-known Dolan–Moré benchmark. Furthermore, an evaluation of 

the quality of our improved nonnegative matrix factorization model has been 

conducted on several random cases. According to the results, the improved model 

can produce well-conditioned factorization elements with a reasonable relative 

error. Therefore, our theoretical assertions were supported by computational 

experiments. 
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Table 2. The outputs of SHS for NMF 

Dimensions ( , , ) METHOD Cond  RelErr 

(50, 50, 4) ALNS 1.99E+00 6.51E-04 

IALNS 1.30E+00 6.14E-04 

(100, 50, 5) 

 

ALNS 2.05E+00 6.07E-04 

IALNS 1.20E+00 5.84E-04 

(100, 100, 5) ALNS 2.21E+00 6.45E-04 

IALNS 1.23E+00 6.44E-04 

(100, 250, 5) ALNS 2.97E+00 9.05E-04 

IALNS 1.29E+00 8.04E-04 

(200, 200, 4) ALNS 1.52E+00 7.25E-04 

IALNS 1.23E+00 7.03E-04 

(200, 200, 8) ALNS 3.26E+00 8.43E-04 

IALNS 1.32E+00 8.24E-04 

(200, 300, 6) ALNS 1.91E+00 8.75E-04 

IALNS 1.20E+00 7.50E-04 

 

Table 3. The outputs of SPRP for NMF 

 

Dimensions ( , , ) METHOD Cond  RelErr 

(50, 50, 4) ALNS 2.21E+00 7.07E-04 

IALNS 1.28E+00 6.99E-04 

(100, 50, 5) ALNS 1.52E+00 6.14E-04 

IALNS 1.26E+00 6.10E-04 

(100, 100, 5) ALNS 2.92E+00 7.71E-04 

IALNS 1.26E+00 7.50E-04 

(100, 250, 5) ALNS 4.24E+00 1.20E-03 

IALNS 1.40E+00 9.81E-04 

(200, 200, 4) ALNS 2.44E+00 7.64E-04 

IALNS 1.24E+00 7.28E-04 

(200, 200, 8) ALNS 2.19E+00 9.28E-04 

IALNS 1.29E+00 9.25E-04 

(200, 300, 6) ALNS 2.27E+00  1.09E-03 

IALNS 1.34E+00 9.60E-04 
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