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Abstract. The paper describes a software system for data collecting in robot digital twins 

(DT); this system accesses information and data from the robot, the process automated by 

the robot and the devices connected to the robot (conveyor belt, ASRS, smart meter) via 

an edge processing structure that includes the robot controller and IoT gateways. The 

software system includes a data acquisition agent directly connected to the edge 

processing hard-ware, a database where the collected information is stored and a user 

interface with multiple data display options. The designed DT software collects robot data 

in two modes: continu-ously from the robot controller and the IoT gateways using 

specific software tools available from the robot manufacturer, and discretely from 

program instructions by messages. Experiments with the DT data collecting system are 

given for ABB IRC5 robot controllers. 
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1. Introduction  

The Factory of the Future (FoF) initiative assumes the digital transformation of 

manufacturing processes and the strong coupling of shop floor devices, systems 

and services by means of their digital counterparts interconnected horizontally in 

Cyber Physical Systems (CPS) frameworks [1, 2] and vertically at enterprise level 

[3]. In addition to the virtualization of manufacturing entities (resources, products, 

orders) and the strong coupling of their software complements, data collection and 

real time processing play an important role in CPS: data acquisition, information 

aggregation from multiple sources, data storage and analytics in the cloud allow 

for equipment status monitoring and detecting unexpected events, predicting 

failures and tailoring maintenance, optimal operations scheduling and assigning to 

working resources in process supervision and control or simulation with 

preconfigured device layout (e.g., industrial robots) in the design stage [4]. These 

monitoring, control, supervi-sion and design tasks are performed in the global 

perspective of aggregated context (device, process, workplace) by help of the 

Digital Twin (DT) technology [5].  
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The complete view of the operating mode, status and real-time capabilities of a 

manufacturing device (e.g., a robot) comprising its virtual motion model, running 

context, state history, and changes in time of its working parameters may be 

captu-red in a digital twin construction defined as a complete digital model of the 

robot that can be inspected and used even in the absence of the physical robot 

system. 

The general DT construct includes the elements: a) the physical device in the 

material world; b) a software entity in the virtual space; c) a number of 

connections between the physical and virtual systems [6]. In the industrial 

domain, a DT consists of a digital representation of an individual production 

device (e.g., robot, end-effector) or collection of devices (e.g., robot team) that 

can execute in different soft-ware environments to orchestrate the two virtual and 

real systems by help of sensor data according to physics models, mathematical 

algorithms and data transforma-tions. From the reality modelling perspective there 

are two classes of DTs: i) DT with a physical component, also known as data-

driven DT which collects data from the robot, the process automated with the 

robot and its partner devices (other robots, the conveyor belt and PLC, etc.); in 

this case the virtual twin is synchronized with the physical twin (the robot 

system); ii) DT without a material part or model-driven DT which is a digital 

model of the robot and its controller that can be run and used for layout validation, 

application design, and parameter tuning [7].  

There are advantages in using the digital twin technology: a) Perceptibility: 

DTs offer knowledge on how the operations of individual robots and 

interconnected members of robot teams are executed, such as collaborative 

welding robots [8]; b) Prediction: using modelling techniques the DT predicts 

future states, behaviours or parameter evolutions, such as robot energy 

consumption; c) Interaction with the physical twin: embedding DT in robot 

control (tracking and correcting motion, detecting unexpected events, taking ad 

hoc protective decisions) [9]; d) Analysis: activating triggering procedures to 

clarify and give details about changes in states and performances of robots for 

health monitoring and maintenance.  

The present paper concerns the software design of data-driven DTs for 

industrial robots. Chapter 2 presents the architecture of the DT embedded in 

individual robot control with robust deployment, and concurrent task allocation to 

robot team mem-bers. Chapter 3 describes the DT data stream collecting layer 

designed as a software system for the edge computing framework of the industrial 

robot. Chapter 4 offers experimental results obtained for ABB robots with the 

proposed edge computing DT layer. Conclusions and perspectives of future 

research are given in Chapter 5.   
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2. Robot DT embedded in robust control and concurrent task allocation  

A Digital Twin model has been designed by aggregating (DTA) a number of 

Digital Twin Instances (DTI) each of them representing a particular material 

instan-ce of an individual robot; by aggregating these multiple instances, it 

becomes possi-ble to query information about clusters of robots that build up 

composite, re-configurable production structures. The DTA is designed to be 

embedded (EDT) in individual robot monitoring and maintenance, and in 

supervision and concurrent assignment of production tasks to multi-robot 

manufacturing infrastructures. This EDT is scalable and can be software 

configured according to production needs; it features bidirectional connectivity 

between the physical shop floor entities (robot manipulator, controller) and its 

informational model by the acquisition of data from internal robot sensors and 

specific software operations of the robot language, and by providing support to 

intelligent decisions for: authorizing / changing / stopping  robot motions, 

reconfiguring working parameters (e.g., speed), selecting best suited team 

members for batch production tasks - in a private cloud platform. 

Two strategies are deployed in software configurations of the robot DT model: 

1) Robust deployment: DTIs maintain individual robot control with situation 

aware-ness. Robot data is fed to the virtual twin (robot model), which allows 

detecting when the output of the executable robot model deviates (a) or differs 

significant-ly (b) from the work parameters of the physical robot. Robot health 

monitoring is realized in two real time stages: i) robot and/or process parameter 

reconfigu-ring in case (a), and ad hoc robot disabling in case (b) to avoid any 

damages. This situation awareness permits diagnostics from parameter 

covariance analysis with separation of concerns: 

monitoring/diagnostic/predicting maintenance. 

2) Simulation of collaborative work much faster than real-time: This is the case 

when the robot DTA acts as concurrent task allocator for multiple robot team 

members, by help of a meta-level control mechanism which executes in 

parallel a simulation of production with software in the loop (SIL) - much 

faster than real time (computer time) and the robust deployment. At certain 

moments of time the supervision of the robot team may take certain actions 

(alter setup parameters, reschedule tasks at robot failure) in the current robust 

deployment configuration in response to some perturbations. The meta-level 

will activate in such cases a SIL configuration (fast simulation with software 

agents acting as virtual twins) that uses the embedded services of robot DTs, 

which observes much in advance problems and avoid their occurrence. The 

meta-level will run a high number of such embedded robot work simulations, 

exactly like the heuristics for job assign-ment. Each virtual robot twin in SIL 

configuration may change intentions as they bid for manufacturing jobs with 
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weights changed by the evolution of the robot’s performances (e.g., energy 

consumption). This SIL configuration may also run with prediction of physical 

twin performances, which permits the meta-level to reschedule tasks on robots 

at the next update of settings/intentions [10]. 

The 4-layer DTA model of robot team members in smart manufacturing is 

given in Fig. 1. The Digital Twin layer DT I collects robot data in an edge 

framework; the data is then processed on the DT II fog layer. The higher level DT 

III and DT IV perform robot health monitoring, supervised control and concurrent 

task allocation.  

 

Figure 1. 4-layer aggregate digital twin embedded in individual reality-aware robot control with 

health monitoring, and concurrent manufacturing task allocation to robot team members 

DT I: Data collecting. This DT part is linked to the physical components of the 

robot system (manipulator - actuators, end-effector, tool; controller - motor drives, 

multiprocessor boards; 3D vision - camera, lights; external sensors - energy, 

vibra-tions), to the process it tends and to the workplace environment (assembly 

station, welding cabinet) and collects data from multiple sources acting as entry 

points.  

DT II: Data processing and analysis. The role of this DT part is to separate and 

align the data streams generated by the devices included in DT I in normalized 

time slices, and to join them by help of covariance methods. This module is 

composed by four functional elements: 

• Container of robot state and performance models: it stores robot operating 

models that reflect with high accuracy the operating modes robot system 

(e.g., computer, dry run, manual, etc.). This repository includes also 

references to the robot’s working parameters that might be periodically 
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updated at run time function of the current work sequence (e.g., the six 

components of the robot transformation TOOL, the robot-object grasping 

model parameters, a.o.).  

• Container of physical process models: this repository stores models of the 

processes that are automated by the robot; a change in the robot operating 

parameters induces changes in the parameters of the process models.   

• Data joining and temporal alignment: raw data streams labelled according 

to the previous two models are combined in application-specific flows 

streams (e.g., resource topic, product topic). Typical operations performed 

on this DT layer are join/merge parallelized on multiple nodes in map-

reduce clusters. After assembling the data necessary for an operation in a 

‘joined’ stream the ‘reduce’ operation follows. Data can be combined in 

different ways by help of several map-reduce keys. For example, messages 

can be labelled by their workplace location or robot energy measurement. 

• Detection of anomalies and unforeseen events: decisions are issued by the 

software on this DT layer for immediate power disabling and robot stop at 

robot failure or when unforeseen events occur. Alerts are triggered when 

some sensed robot parameters deviate significantly from the normal range.  

DT III: Machine learning. This higher level cloud-based DT part gets essential 

information retrieved and pre-processed in real time at shop floor level from the 

connected robot system and external devices (equipment, process, work area). 

This DT module uses machine learning (ML) algorithms to supervise and 

maintain the proper functioning of the robot and to optimize its partaking in 

individual (energy consumption) and collective manufacturing tasks (throughput, 

execution time): prediction to identify patterns and big deviations from measured 

signals and on this basis to predict robot behaviours; classification to establish  

classes for feature vectors created; clustering to detect similarities in aggregated 

data and label feature vectors. Historical data stored in the cloud is needed to learn 

these models. 

DT IV: Taking smart decisions. This DT software runs in the cloud ensuring the 

high level support for intelligent decisions: i) keeping safe robot operating, provi-

ding evidence for robot maintenance; ii) optimizing the allocation of 

manufacturing tasks to robot team members depending on the currently measured 

and predicted robot state and key performance indicators (e.g., joint wear, 

accuracy, energy).  

The next chapter details the DT I software architecture for robot data 

collecting.  
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3. DT software architecture for robot data collecting 

In order to collect i) robot sensor data, results of instructions executed in robot 

application programs, and 2) data generated by external control devices (PLCs, 

conveyor devices) and sensors with embedded intelligence (smart energy meters), 

the robot controller and the external measurement and control devices are 

integrated in a network of IoT gateways for DT edge processing on the DT I layer 

[13]. The IoT gateways are connected in an aggregation node configuration [14], 

the hardwa-re kernel of which is a PC workstation or an industrial processing unit. 

Fig. 2 shows presents the edge processing architecture of the aggregate DT I 

layer for a team of  industrial robots (Ind Rob ) that are concurrently 

assigned in manufacturing tasks (welding, assembly). Each resource (Ind Rob 

) offers: 

1. Process data from Producer 1 - process manager and robot: outcomes of 

specific robot programming language (e.g., V+, RAPID) instructions indicating 

the activity of the robot and work performed in the process served by the robot. 

Examples of such data: robot inactive duration (%); robot run time (%); parts 

worked per time unit; parts assembled / palletized; parts recognized / located 

by vision; parts successfully managed by robot vision. 

2. Internal robot data from Producer 2 - robot controller: multiprocessor bus 

power and voltage (W, V); DC voltage (V); computer board temperature (°C); 

joint encoder temperature (°C); motor drive temperature (°C); duty factor of 

robot (% from limit); harmonic drive usage (%); max. active torque (% from 

max. allowed torque); max. velocity (RPM); max. trajectory error (%). 

3. External robot and environment data from Producer 3 … m - IoT gateways and 

smart embedded devices: work-in-process data from intelligent products travel-

ling between robot workstations; data from robot-serviced conveyor belts (belt 

speed [mm/sec]; total part count; parts per minute; deadlocks, diverting faults); 

inventory data in ASRS; vision data (scene luminosity, no. of lamps switched 

on, no. of active virtual cameras), energy consumption data from smart meters.  
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Figure 2. Edge processing and software system for data collecting in DT layer I 

The software architecture of the DT I layer system is represented in the right 

part of Fig. 2, and includes three components: the data acquisition agent (DA), the 

database and the user interface. The main software component is the DA which 

performs da-ta collection from the  producers of the  industrial 

robots, in two modes: 

• Continuously, from the robot controller and external IoT gateways, at samp-

ling periods a priori established, by help of a specific software tool available 

from the robot system manufacturer. 

• Event triggered, from the program instructions (PI) of the robot 

programming language (RL), by messages received from the application 

program. 

Robot data and data from objects connected to the robot (conveyor belt, vision) 

can be, e.g., directly saved from Omron-Adept systems using the ACE proprietary 

software tool and stored into a data file [15]. ACE relies on software processes 

that execute in the reserved V+ robot operating system’s kernel space and get 

knowled-ge about the robot state. ACE on the PC-type robot terminal is connected 

to the robot controller via Ethernet; the application is launched with a default 

workspace that integrates the observed robot after which the System Monitor 

software tool is initiated and arranged to log data into a specified file at the 

minimum sampling rate of 0.5 seconds. This file is opened by the System Monitor 

to transmit the saved information to the higher cloud layer of the robot DT by help 

of Cygwin Linux tools that run on Windows [16]. 
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In the reported research, robot data is directly collected from IRB ABB 

industrial robots at time intervals of 0.2 seconds using the Software Development 

Kit ABB PC SDK [17]. PC SDK is a software tool that uses Microsoft .NET and 

Microsoft Visual Studio and permits developing custom user interfaces for IRC5 

robot controllers. The advantage of using such a tool is the ability to access and 

monitor multiple robot systems from a single location A custom interface was 

realized as independent application that communicates with the  robot 

controllers.  

Fig. 3 depicts the software architecture of PC SDK.  

 

Figure 3. Software architecture of the ABB PC SDK (ABB Robotics) 

The PC SDK communicate with the industrial robot controller by help of an 

own Controller API (CAPI) based on the COM technology. This API employs 

sockets and the local TCP/IP protocol stack to receive and interpret messages 

from real and virtual controllers. The classes by which the robot controller’s 

functionality can be known constitute the CAPI organised in 11 domains, from 

which the following are used for robot health monitoring by the digital twin layers 

DT II and DT IV: Controllers, EventLogDomain, IOSystemDomain, 

MotionDomain, RapidDomain and Messaging. Event log messages are used to 

extract knowledge about the con-troller status and run processes, and the 

execution of RAPID programs.  

Data sampling has been established at 200 milliseconds for two main reasons: 

a) the PC CAPI is unable to ensure hard real-time demands because of the slower 

network communication rate via TCP/IP and of the robot controller’s frequent 

higher priority tasks (e.g., trajectory generation); b) the minimum response time 

for IRC5 robot controllers is in the range of 10-100 milliseconds. Using the 

Controller API the following data can be collected on DT I: status of input / 

output signals, coordinates of robot points, joint values, information on events, 

and error messages. 
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Robot- and process-related data can be collected at discrete time moments, 

either triggered by events specific to the process served by the robot (e.g., current 

opera-tion on product finished by the robot, last operation on product finished by 

the ro-bot) or initiated by the DT to monitor the proper execution of  robot 

operations (e.g., robot motion, end-effector actions, vision-based object 

recognition and locating); this can be done by the DT’s data acquisition agent that 

processes the messages re-ceived from the robot controller upon execution of 

particular program instructions that offer the information of interest. For industrial 

robots, For industrial robots, the transfer of information through PI messages can 

be done by an auxiliary task that sends the data to the DA without influencing the 

main program, which assumes that the robot controller has multitasking 

capabilities.  

If this condition is not met, like in the case of IRC5 ABB robot controllers, a 

solution has been developed that allows simultaneously sending IP information to 

DT I’s data acquisition agent and performing the robot operation. The solution 

con-sists in redefining those PI of the RL that are of interest for the DT to 

generate and send messages to the DA. The PIs redefined in Table 1 first send 

information about the instruction type, prescribed parameters (e.g., desired joint 

values and estimated execution time, then execute the respective instruction and at 

PI completion send again information concerning the execution of the instruction 

(real joint displace-ments and execution time). 

Table 1. Redefined RL instructions for message transmission to the DA 

 

Other PI of interest for DT are related to visual global recognition of the scene 

foreground, object recognition and locating, visual measurements and calibration. 

The DTA’s principal functionality consists in monitor the operating mode of 

the physical team robots and to create their history, which needs a database on the 

DT I layer to save information about work parameters, execution times, and 

elements describing robot motion (trajectory execution and speed profile), robot 

operations, sequences, experiments and applications performed. 

The designed database, implemented in MariaDB and MySQL with the 

XAMPP Apache distribution, is composed of the following tables: 1) Programs; 

2) Available Programs; 3) Program Instructions; 4) Available Instructions; 5) 

Equipment (robot) parameters; 6) Event description; 7) Experiments, see Fig. 4. 
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Figure 4. Database structure of the DT I software system for robot data collecting 

Table 1 Programs stores information about the programs/procedures 

performed: program identifier; information (parameters, description, auxiliary 

information); date and time; duration of the current procedure; cycle number (for 

procedures that is executed several times, like palletizing, sorting, assembling). 

Table 1 is in a many-to-one relationship with Tables 2 - Available Programs 

which contain a brief description of the program/procedure; version; date and 

time. 

Table 3 Instructions saves information concerning the instructions: instruction 

identifier; type of instruction; parameters of the instruction; date and time; time at 

which the instruction is executed relative to the beginning of the current 

procedure.  

This table is in a many-to-one relationship with Table 4 - Available 

Instructions which contain a brief description of the existing instructions. 

Table 5 Equipment parameters contains information regarding the parameters 

of an equipment (e.g., 6-axis industrial robot): joint values; date and time; event 

identi-fier (if an event occurs); identifier of the current experiment. 

This table is in a many-to-one relationship with Tables 6 - Event description 

and Table 7 - Experiments which contain a description of the possible events 

respective-ly a description of the experiments performed along with the date and 

time of the experiment. 

A user interface was developed in the DT I software system to present the 

robot data collected in real-time and the robot, process and workplace 
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environment infor-mation saved in the database. This user interface is composed 

of three data presenta-tion windows: 

• Monitor is the window which includes the server management elements 

(start/stop, status, etc.), the elements for message display, the values of vari-

ous parameters received in real-time (e.g., joint values, no. of parts recogni-

sed, located and palletised) and the initialisation elements for the current 

experiment. 

• Info is the window in which the general information about the connection 

with clients (e.g., robot controllers, robot-served devices) and database 

infor-mation display modes are presented. 

• Info2 is the window in which the work parameters (e.g., joint values, scene 

foreground) recorded and saved from previous experiments are visualised, 

see Fig. 5. 

 

Figure 5. Values of 6-d.o.f. robot joint variables for CNC workplace tending point recorded in 

previous Experiment no. 14 and displayed in the Info2 window of the DT I user interface 

 

4. Experimental results 

The Digital Twin software developed for robot data collecting was tested with 

a 6-d.o.f. vertical articulated industrial robot ABB IRB140. The test program im-
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plements a simple part palletising procedure in a 1D part stack, as shown in Fig. 6, 

a screen capture of the corresponding model-driven RobotStudio application [18].  

Using the GetPosition() function of the CAPI PC SDK 5.13 class library 

motion domain 

objController.MotionSystem.ActiveMechanicalUnit.GetPosition(),  the set of joint 

values are saved in the C# program in a variable of aJointTarget type as working 

parameters of interest, accessed then with AJointTarget.RobAx.Rax_no PI 

 

Figure 6. Robot Studio screen capture for 1D palletising task in DT I software test experiment  

The program information for the 5 pick-and-place (pp) robot cycles in included 

in Fig. 7. 

 
Figure 7. List of robot working programs for the 5-cycle palletising application (Experiment 2) 

 

The execution of the robot program starts at 0.5 seconds from launching the 

ABB PC SDK tool; this time period is needed to create the client and realize the 
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connec-tion for data transmission. In order to collect variables, signals and robot 

working parameters, a controller-type object was created using the builder 

Controller(object ControllerInfoCollection). 

The total processing time for the 5-pp cycle palletising application with robot 

speed limited at 50% of its maximum value is 58.442 seconds. Fig. 8 presents the 

Info2 user interface display for the evolution of the joint displacements in the test 

palletising application (Experiment 2). 

 

Figure 8. Evolution of robot joint values collected in real time during Experiment 2   

This variation in real time of the six robot joint displacements characterizes the 

operation of the robot and can be associated to a certain characterisation of the 

robot in terms of working parameters (programmed speed and acceleration, 

number of motion cycles, load, cumulated work time), robot status (wear, time 

from last main-tenance) and environment (energy consumption). The evolution of 

joint values tag-ged with these factors is saved and stored by the DT as a digital 

signature, compared with future evolutions and used as support to decision for 

weighting the participa-tion of the physical robot in batch product operations, 

customized maintenance, a.o.   

5. Conclusions  

The paper describes a software system for data collecting in robot digital twins. 
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This software system accesses information and data from the robot, the process 

automated by the robot and external devices interfaced to the robot (conveyor belt, 

ASRS, smart meters) via an edge processing structure that includes the robot con-

troller and IoT gateways. The software system includes a data acquisition agent 

directly connected to the edge processing hardware, a database where the 

collected information is stored and a user interface with multiple data display 

options.   

The DT data collecting software is able to monitor the working robot and 

retrieve real-time data expressing the current operating mode, working parameters 

and per-formances of the robot. The DT can thus identify different operating 

patterns of the industrial robot, compare them using the history saved in the 

database, and provide support to decision to optimize motion trajectories (avoid 

jerks and collisions, keep the imposed speed profile, minimize time and energy 

consumption), production processes (reduce operation cycles) and maintain robot 

health (predict unexpected events, detect anomalies, customize maintenance).  

The designed DT software collects robot data in two modes: continuously from 

the robot controller and external IoT gateways by help of specific software tools 

available from the robot system manufacturer, and discretely, event triggered, 

from the program instructions of the robot programming language by messages 

received from the application program.   

The design solution and experiments for the DT robot data collecting are 

descri-bed in detail for ABB industrial robots equipped with IRC5 controllers. 

Future research will be directed toward defining energy consumption patterns 

for classes of robotic processes and predicting energy consumption of robot team 

members to weight their participation in shared batch tasks for cost optimization.  
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