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DIGITAL IMAGE RESTORATION USING LINEAR PDE-
BASED FILTERING MODELS

Tudor BARBU!?

Rezumat. Modelele de filtrare a zgomotului Gaussian bazate pe ecuatii cu derivate
partiale (PDE) liniare sunt discutate in aceastd lucrare. Solutiile de restaurare a
imaginilor digitale bazate pe ecuatii de difuzie liniare sunt mai intdi descrise. In
continuare, propriile noastre contributii in acest domeniu al procesarii de imagini,
reprezentand modele PDE liniare de filtrare eficiente bazate pe ecuatii diferentiale
hiperbolice si stocastice, sunt prezentate. Rezultate ale experimentelor noastre de filrare
sunt de asemenea oferite in acest articol.

Abstract. The linear partial differential equation (PDE) - based models for Gaussian
noise removal are discussed in this paper. The digital image denoising and restoration
solutions based on linear diffusion equations are surveyed first. Then, our own
contributions in this image processing domain, representing some effective linear PDE-
based filtering models based on hyperbolic and stochastic differential equations, are
presented. The results of our denoising experiments are also provided in this article.
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1. Introduction

Partial differential equation (PDE) - based models have been applied successfully
in the digital image processing and analysis domain in the last 35 years, because
the conventional techniques have many drawbacks and cannot solve properly
some important tasks related to this field [1]. Such a task is the preservation of the
essential details during the denoising and restoration processes.

Second-order nonlinear PDE-based filtering schemes, like the Perona-Malik
anisotropic diffusion model [2], TV-ROF Denoising [3] and other diffusion-based
and variational methods [4], outperform the classic 2D filters [1], since they
remove the additive Gaussian noise, overcome the blurring effect and preserve the
essential features, like the edges and corners. Unfortunately, these nonlinear
diffusion-based filters may generate the unintended effects, like the staircasing.

Some improved nonlinear PDE variational models that alleviate this undesired
effect, such as the Adaptive TV denoising [5], TV-L1 model [6], anisotropic
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HDTYV regularizer [7] and the fourth-order You-Kaveh isotropic diffusion scheme
[8], have been introduced in the last decades. Although the improved nonlinear
PDE-based methods reduce that staircase effect, they do not remove it completely.
Also, they have other disadvantages, like the high computational cost, which
means a high running time, and the over-filtering effect.

The linear PDE-based denoising algorithms, which are disscused in this paper,
provide an effective image restoration and could address some drawbacks of the
nonlinear PDE models, although they have their own disadvantages. The linear
diffusion schemes surveyed in the next section have long been considered the
simplest PDE-based image filtering approaches. Their main drawbacks are the
image blurring effect, which could corrupt the boundaries and other features, and
the absence of the localization property. They could also dislocate the edges when
moving from finer to coarser scales [9].

We have developed many linear and nonlinear PDE-based filtering techniques
that reduces successfully the additive noise, preserve the image details and
overcome the undesired effects, in the last 15 years [10-15]. They solve properly
the drawbacks of the existing linear and nonlinear PDE-based filters. These
improved linear PDE-based denoising solutions, which represent our most
important contributions in this image processing field, are disscused in the third
section. This research article finalizes with a conclusions’ section and a list of
references.

2. Linear diffusion-based image filtering models

Diffusion constitutes the physics process resulting from random motion of
molecules by which there is a net flow of matter from a region of high
concentration to a region of low concentration. It equilibrates the concentration
differences without creating or destroying the mass and it is expressed by the
following Fick’s first law of diffusion [16]:

J=-D-Vu (1)

where J is the diffusion flux, D represents the diffusivity and Vu is the
concentration gradient. Since the mass is conserved in this process, one may apply
the continuity equation [16], which is a conservation law describing the physical

transport: Z—u = —div J . By replacing the flux given by (1) in this equation, it
14
results the diffusion equation:

% =div(D-Vu) ()
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Diffusion equation (2), which is also called heat equation, is very useful in image
processing and analysis, where the concentration is identified to the grayscale
value at a given location [4]. Thus, if u:Q < R> — R is a gray-level evolving

image, the observation 7 € L'(R?) is affected by the additive white Gaussian

noise (AWGN) according to the formation model 7 = Hu + N (0,62 ), where

H : H —K, K a real Hilbert space, is a bounded linear operator. So, the next
diffusion model results for this denoising process:

8_14 = div(D(x, y,t)- Vu)
ot ,(x,y)ng R’ 3)

u(0,x,y)=1(x,y)

If the diffusivity function (diffusion tensor) D (x, y, t) does not depend on u itself,
then (3) is a linear diffusion process. Otherwise, if D is a function of u, then (3)
represents a nonlinear diffusion. If the tensor is constant over the entire domain
(D(x, y.2) =, ¥(x, y) € Q2), then the PDE in (3) is a homogeneous, or isotropic
diffusion. If D represents a space-dependent function, then this diffusion process
is inhomogeneous, or anisotropic [4, 13].

Since Z—I; = div(D(x, y,t)- Vu) = D(x, y,t)Au + VD(x, y,t)- Vu, one obtains

the next linear isotropic diffusion model:
Gu _ div(aVu)= a - Au
ot N (x, y) e Q, 4)

u(0,x,y)=1(x,y)

where « > 0. The PDE model (4) represents a heat transfer equation that is a
parabolic partial differential equation describing the temperature variation
distribution [17]. The finite difference-based numerical approximation of (4)
provides an iterative algorithm that evolves the noisy observation to the denoised
image.

This linear diffusion-based denoising solution is equivalent to the 2D Gaussian
filtering [1]. The parabolic PDE in (4) has a unique solution of the form:

I(x,y), =0
u<x,y,t>{ ek e ©
(GG*I)(x,y),t>O

2 2
Xty

2
620-'

where o = +/2¢ and the two-dimension Gaussian filter kernel G, (x.y)= P~
TO
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This shows that performing a linear diffusion for the time 7 with & = 1 equivales
to performing the Gaussian denoising with o = /27 .

Linear PDE-based filtering methods have important advantages, such as the
easyness of handling, fast execution and low running time. Also, this formulation
in terms of a diffusion equation is much more natural and posesses a higher
generalization potential than the operation of convolution with 2D Gaussians.

Unfortunately, a disadvantage of the linear diffusion approaches is the undesirable
blurring effect. The isotropic diffusion performs a homogeneous denoising,
blurring equally in an all the directions. These techniques remove properly the
Gaussian noise, but may blur some details, since they generate diffusion across
the boundaries. These linear PDE denoising schemes may also dislocate the image
edges when moving from finer to coarser scales [9]. Also, the linear diffusion
model (4) has no localization property, its solution propagating with infinite
speed.

Some existing techniques aim to solve these issues by introducing some
modifications of the filter kernels or transforming the linear models into nonlinear
diffusion schemes. Such a detail-preserving solution is the directed diffusion
process [18]. This process incorporates a-priori knowledge about the details to be
preserved into the linear PDE model. A directed diffusion-based approach was
proposed by R. Illner and H. Neunzert [18]. It provides some important
background information in the form of an auxiliary image, 4, as following:
ou

— = AAu —ulNA

ot . (x,y)e, (©)

1(0,x,y)=g(x,y)

An important category of linear PDE-based filtering models is that of the linear
complex diffusion schemes. An effective linear complex diffusion-based image
filter proposed in [19] has the form:

ou

ot
u(x;O)z u, e R, c,cuedC

=u,=cu,,t>0,xe R

xx 2

(7

The partial differential equation (7) represents a generalization of the linear
diffusion-based equation in (4) for ¢ € R . The diffusion model is well-posed for
c > 0O [19]. A linear complex diffusion-based denoising example is displayed
in Fig. 1.
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a) Noisy image

b) Restored image
E.'. i

Fig. 1 3.AWGN corrupted image restored by linear complex diffusion

3. Additive noise removal using linear hyperbolic PDE models and
stochastic equations

Our main contributions in the linear PDE-based denoising and restoration field are
described briefly in this section. They represent improved linear PDE filtering
models that solve the limitations of the existing linear PDE-based noise reduction
techniques.

Thus, we introduced two restoration algorithms based on linear second-order
hyperbolic PDEs with boundary conditions [10, 11]. The first hyperbolic PDE-
based model that is disseminated in [10] has the next form:

62u+ 28—M—on2u+§’(u—u )—O
o 7 o o
3 u(0,x,y)=uo(x,») (e @

o
6—’;’(0, x, ) =u,(x,»)
u(t, x,y) =0, V=0, (x,y)e o

where image domain Q < (0,.0)x R*, 4,7, €(0,3], £ <(0,0.5] and u, e I* (Rz)
is the observed image corrupted by AWGN.

This second—order PDE model is well-posed, admitting a unique variational
solution which is continuous in 7 with values in 27 (R2 ) Also, if u, € H* (R2 ),
then u(r)e H*(R>), V¢ = 0[10]. It also represents a non-Fourier model for the

heat propagation, because its unique and weak solution is propagating with finite
speed. We also demonstrated that hyperbolic model (8) possesses the localization
property [9], unlike others linear PDE-based filtering schemes.

The solution of the proposed linear PDE model is approximated numerically
applying the finite-difference method [20]. The next explicit iterative numerical
approximation scheme is computed in [10]:
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2
u”“(i,j)=%u"(iaj)ﬁL%”n_l(i’j)jL 26u’ (i, j)+

9

20" G+ ) +u" G =1, ) +u" G+ D) +u" (G j—1) —4u" (i, )

where u°(, j) = uo(i, j). The number of iterations, N, is rather low, since this

discretization numerical algorithm converges fast to the optimal denoised image.

This technique was successfully tested on hundreds of images corrupted by
various amounts of AWGN. It obtained satisfactory filtering results while
preserving the image details. Given its hyperbolic character, it even enhances the
image edges. It also overcomes other undesirable effects, like staircasing [21] and
speckle noise [8]. Some method comparison results illustrating the effectiveness
of the described approach are described in Table 1 and Fig. 2 [10].

Table 1. Method comparison: average PSNR values of several filtering techniques

Proposed PDE- Linear PDE-based Average Wiener 2D | Perona-Malik | TV Denoising
based filter filter (heat equation) filter
27.1 (dB) 24.3 (dB) 23.2 (dB) 24.5 (dB) 25.8 (dB) 24.3(dB)

a) Original image

mage corupted by Gaussian noise

d) Linear PDE-based filtering e) Average filtering

_c) Image restored hyperbolic model_

Fig. 2 Method comparison: output restoration of various denoising methods

The second hyperbolic equation-based restoration model, which was introduced in

[11], has the following form:
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( 2 2
2gtb;+,366—b;—%Au+E-Vu=O

(10)
1 w(0,x,3) = uy(x, 3 ), (x, ) € ©@

o

u(t,x,y)=0, (x,y)coQ
where «, 3, < (0,1], and the function £ : R®> — R? is:

E(x, v) = (e—n(x2+y2), e—é(x2+y2)) (11)
with 77, & > O.

This also represents a well-posed PDE model. Since it has a unique weak solution
that is propagating with finite speed [11], (10) is a non-Fourier model for the heat
propagation, too. The variational solution of the model (10) is determined using
the next finite-difference based iterative explicit numerical approximation scheme
that is consistent to the hyperbolic PDE model [11]:

(e - 4’ . N P20 ..
u"'i,j)=———u"(i,j)+ =———u""(i,j)+

()] Py () Y )]

2 12
— (G, ) U =1 )+ D)+ G —1) — 4" (G ) - (12)
2a° +

2 (e”7([2+j2) e_g(l.2+j2)). u"G+L)+u"(-1L)) u"G,j+D)+u"({,j—-1)
20 + B ’ 2 ’ 2

The discretization algorithm (12) was applied on many noisy images. It removed
successfully the additive Gaussian noise and preserve well the edges, corners and
other details. Also, the obtained linear PDE-based filtering algorithm avoids
unintended effects like blurring, staircasing [21] and speckle noise [8]. The
method comparison described in Table 2 and Fig. 3 shows the effectiveness of our
hyperbolic PDE-based filter that outperforms both classic 2D image filters and
several nonlinear PDE-based smoothing models [11].

Table 2. PSNR scores of the denoising methods

The proposed hyperbolic PDE —based model 26.81 (dB)
Gaussian 2D 22.38 (dB)

Average filter 23.17 (dB)

Median filter 23.92 (dB)

Wiener 2D filter 24.73 (dB)

Perona-Malik model 25.89 (dB)

TV — ROF Denoising 25.24 (dB)
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b) Noisy i

E) Wiener filter h) Perona-Malik 1 TV Denoising

Fig. 3 Barbara image denoised by several filters

Another linear PDE-based image filtering model was derived from a stochastic
differential equation (SDE) [12]. So, the following SDE-based additive Gaussian
denoising model was proposed by us:

{dX(t) + F(X(0)dt =dW (1)

5 (13)
X(0,x,y)=X,(x,y) e R

where the diffusion process X (¢) = {X,(¢), X, (1)} and W () = ,u{,b’l @), B, (t)}, xS (0,1)
represents the 2D Brownian motion in the probability space {2, F, P} with
natural filtration (#7), # > 0[12]. The restored image u is determined as:

u(t, X o (x,)) = Elug (X (0), Xy (x, ) ]2 >0 (14)

where E is the expectation operation. Then, by applying the Kolmogorov equation
corresponding to the SDE-based model (13), one obtains the next linear parabolic
PDE model:
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2
)= A, )~ F(&) Y au(1.£).02 0 (15)
1(0,&) =uy(£).£ « R?
where &=X,(x,»)={(i./)} 5, w R and p e (0,1] [12]. The drift term F was
properly modeled, such that to determine optimal filtering results, as
F(Xl (t), X2 (t)) — (e—al(X1(t)2+Xz(l)2),e—a2(X1(l)2+X2(l‘)z))’ Where oL, O =0.

The following finite difference-based iterative explicit numerical approximation
algorithm was constructed for the PDE model:

2
w i, j)=(A—24 +1)¢"(i,j)+%(u"(i+1,j)+u"(i—1,j)+u"(i,j+1)+u"(i,j—1))+(16)

(i) U (1 +1,])2u (1 1,])_e_az(,z+/.) u (z,] +1)2u (z,] 1)—ﬂu0(i,j)

This approximation scheme 1is stable and consistent to the SDE-derived
differential model (15). It was applied succesfully in our denoising and restoration
experiments. The proposed linear parabolic PDE-based filtering solution
outperforms the conventional filters and some diffusion-based schemes, as
illustrated by the average PSNR scores in the next table.

Table 3. Average PSNR values achieved by various filters

The proposed PDE-based filter 26.94 (dB)
Gaussian filter 22.43 (dB)

Average filter 23.29 (dB)

Wiener 2D filter 24.23 (dB)
Perona-Malik 1 25.69 (dB)
Perona-Malik 2 25.83 (dB)

TV — ROF Denoising 24.96 (dB)

4. Conclusions

An overview on the linear PDE-based Gaussian noise removal techniques has
been provided in this work. The image filtering methods using various linear
diffusion equations have been described, their main advantages and disadvantages
being discussed. They provide better restoration results than the conventional
filters, but are outperformed by the nonlinear PDE-based techniques in terms of
the performance measures. However, they have a much lower computational
complexity than the nonlinear diffusion-based denoising methods and a shorter
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execution time. Also, they avoid some unintended effects that could be generated
by the nonlinear PDEs, such as the blocky (staircase) effect and the multiplicative
speckle noise.

Our main contributions in this image restoration field were also discussed here.
The improved linear PDE-based denoising techniques proposed by us address
properly the shortcomings of the existing linear PDE-based filters, such as the
blurring effect, the absence of the localization property and the edge dislocation.
The two hyperbolic PDE-based restoration approaches developed by us not only
preserve the images edges and other essential details during the denoising process,
but also sharpens them, given the second derivative of the evolving image
function in these hyperbolic equations. Also, our filtering techniques outperform
not only the well-known classic image filters, but also some variational and
nonlinear anisotropic diffusion models, as shown by the described method
comparison results. However, they are outperformed by the state of the art
nonlinear PDE-based denoising approaches.
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