ISSN 2066-8562

STRUCTURAL AND ELECTRICAL ANALYSIS OF CU₂O LAYERS FOR SOLAR CELL APPLICATION

Irinela CHILIBON¹, Laurentiu FARA²³, Ørnulf NORDSETH⁴, Raj KUMAR⁵, Bengt Gunnar SVENSSON⁵⁵, Constantin DUMITRU², Florin DRAGAN², Vlad MUSCUREL², Cristina VASILIU¹, Anca PARAU¹

Abstract: In this work the structural and electrical properties of the Cu₂O layer of a metal oxide solar cell were investigated. Cu₂O films were synthesized by reactive direct current magnetron sputtering on quartz substrates and characterized with scanning electron microscopy (SEM), atomic force microscopy (AFM) and Hall effect measurements. The grain size and surface roughness have important implications for the optical and electrical performance of the Cu₂O layer. The SEM analysis revealed an increase in grain size in the sample treated with rapid thermal annealing at 900 °C. AFM analysis shows that the high thermal annealing increases the surface roughness by a factor of 10. The electrical properties of the Cu₂O film are enhanced after annealing at 900 °C.