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AN ADAPTIVE CONJUGATE GRADIENT ALGORITHM 

WITH CLUSTERING THE SINGULAR VALUES OF THE 

SEARCH DIRECTION MATRIX FOR LARGE-SCALE 

UNCONSTRAINED OPTIMIZATION 

Neculai ANDREI
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Abstract. An adaptive nonlinear conjugate gradient algorithm based on clustering the 

singular values of the search direction matrix and on the inexact Wolfe line search is 

presented. The search direction is dependent to a positive parameter. The value of this 

parameter is selected in such a way that the singular values of the matrix defining the 

search direction are clustered around 1. We prove that for general nonlinear functions 

and independent of the line search procedure the search direction satisfies both the 

sufficient descent condition and the Dai and Liao conjugacy condition. According to the 

value of the parameter, the algorithm uses the suggested search direction, or it triggers to 

the Hestenes and Stiefel direction. Under classical assumptions, for uniformly convex 

functions, we prove that the algorithm is globally convergent. Using a set of 800 

unconstrained optimization test problems we prove that our algorithm is significantly 

more efficient and more robust than CG-DESCENT algorithm and slightly more efficient 

and more robust than ADCG algorithm. By solving five applications from the 

MINPACK-2 test problem collection, with 10
6
 variables, we show that the suggested 

adaptive conjugate gradient algorithm is top performer versus CG_DESCENT. 

Keywords: Unconstrained optimization, Conjugate gradient algorithms, Wolfe conditions, 

Singular values clustering, Sufficient descent condition 

1. Introduction 

Let us consider the unconstrained optimization problem 

 min{ ( ), },nf x x R  (1.1) 

where : nf R R  is continuously differentiable and bounded below. For solving this 

problem we suggest a nonlinear conjugate gradient algorithm, where the iterates ,kx  

0,1,k   are generated as 

 1 ,k k k kx x d  
 (1.2) 

the stepsize k  is positive and the search directions kd  are computed as: 

 1 1 ,N

k k k kd g s   
 0 0 ,d g 

 (1.3) 
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1 1 ,
T T

kN k k k k
k kT T T

k k k k k k

yy g s g

y s y s y s
     (1.4) 

where .  is Euclidian norm, ( )k kg f x , 
1 ,k k ky g g   

1k k ks x x   and 
k  is a 

positive parameter which follows to be determined. Observe that (1.4) is very close to the 

conjugate gradient parameter of Hager and Zhang conjugate gradient algorithm [22], where 

2.k   In this paper we are interested to determine a value for the parameter 
k  in such a 

way to get an efficient and robust conjugate gradient algorithm able to solve large-scale 

unconstrained optimization problems. 

Observe that, if f  is a quadratic function and the step length k  is selected to achieve the 

exact minimum of f  in the direction ,kd  then 1 0,T

k ks g    i.e., the formula (1.4) for N

k  

reduces to the Hestenes and Stiefel [24] (HS) scheme. However, in this paper we consider 

general nonlinear functions and inexact line search based on Wolfe conditions [33, 34]: 

 ( ) ( ) ,T

k k k k k k kf x d f x g d     (1.5) 

 1 ,T T

k k k kg d g d   (1.6) 

where 0 1.     

We see that the parameter N

k  defined in (1.4) can be viewed as a modification of the HS 

conjugate gradient algorithm. Observe that if the step length k  is computed according to 

the Wolfe line search conditions (1.5) and (1.6), then 0.T

k ky s   Therefore, along the 

iterations, when the step ks  is small (in norm), the factor ky  in the numerator of 

1 /HS T T

k k k k ky g y s   tends to zero. On the other hand, when the step ks  is small, again the 

factor ky  in the numerator the second term of N

k  tends to zero. Hence, N

k  becomes 

small and the new search direction 1kd   is essentially a small alteration of the steepest 

descent direction 1.kg   In other words our method automatically adjust N

k  to avoid or 

at least to attenuate jamming, which is the main defect of the steepest descent direction. 

It is worth saying that a conjugate gradient method related to our computational scheme 

(1.3) and (1.4) is that given by Dai and Liao [12], in which the parameter N

k  in (1.3) is 

replaced by: 

 
1

1
( ) ,DL T

k k k kT

k k

y ts g
y s

  

 (1.7) 

where 0t   is a constant parameter. For different choices of ,t  the computational scheme 

of Dai and Liao generates different results. An optimal value for t  in this algorithm is not 

known (see [3]). Observe that the method (1.3) and (1.4) can be viewed as an adaptive 

version of (1.7) where ,t  at each iteration, is updated as 
2

/ ( ).T

k k k kt y y s   
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The purpose of this paper is to find a value of the parameter ,k  in such a way to get an 

efficient and robust conjugate gradient algorithm. For this we suggest using the structure 

of the singular values of the matrix associated to the search direction (1.3) and (1.4). 

Using (1.4) in (1.3) the search direction in our algorithm is computed as: 

 

2

1 1
1 1 ,

T T
kk k k k

k k k k kT T T

k k k k k k

yy g s g
d g s s

y s y s y s
 

    

 (1.8) 

where k  is a positive parameter. Now, considering the Perry [28] idea the search 

direction (1.8) can be represented as: 

 1 1 1,k k kd H g     (1.9) 

where  

 

2

1 .
T T

kk k k k
k kT T T

k k k k k k

ys y s s
H I

y s y s y s
   

 (1.10) 

Observe that 1kH   is a sum of a symmetric matrix 
2 2[ / ( ) ]T T

k k k k k kI y y s s s  and a non-

symmetric one / ,T T

k k k ks y y s  i.e., 1kH   is a non-symmetric matrix. Therefore, (1.9) 

represents an ad hoc algebraic expression of the search direction 1kd   in which the non-

symmetric matrix 1kH   is not an approximation to the inverse Hessian 2 1

1( ) .kf x 

  It is 

this algebraic form of the parameter ,N

k  given by (1.4), which leads us to this expression 

of 1.kH   In other words, strictly speaking, (1.9) is not a real, quasi-Newton direction.  

In this point, to define the algorithm the only problem we face is to specify a suitable 

value for the positive parameter k  in (1.8). The approach used here is to determine the 

value of the parameter k  in (1.8) in such a way to minimize the condition number of the 

iterate matrix 1kH   in (1.9). In other words, the idea of this paper is to determine the 

value of the parameter k  in order to achieve more numerical stability in computation of 

the search direction (1.9). The effect of ill-conditioning of 1kH   on the iterative algorithm 

(1.2) using the search direction (1.9) can be explained as follows (see also [8, 9]). For a 

vector ,nv R  let us denote 1( ) [ ( ), , ( )]T
nfl v fl v fl v  as a vector in ,nR  where ( ),ifl v  

1, , ,i n  is the nearest floating point number to .iv  Using (9) we have 

 1 1 1( ) ( ),k k kfl d H fl g   
 0,1,....k   

Therefore, 

 1 1 1 1 1( ) ( ( ) )k k k k kfl d d H fl g g       
 

 1 1 1( ) .k k kH fl g g   
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Now, if the matrix 1kH   is nonsingular, it follows that 

 

1 1 1 1 1 1
1 1 1

1 1 1 1 1

( ) ( ) ( )
.

k k k k k k
k

k k k k k

fl g g fl d d fl d d
H

g H d H d

     
  

    

  
 


 

Therefore, the following inequality between the relative errors of 1kd   and 1kg   can be 

established: 

 

1 1 1 1
1

1 1

( ) ( )
( ) ,

k k k k
k

k k

fl d d fl g g
H

d g
   



 

 


 (1.11) 

where 1
1 1 1( )k k kH H H 
    is the condition number of 1.kH   Therefore, if the 

iteration matrix 1kH   is ill-conditioned, then even for small values of the relative error of 

1,kg   the relative error of the search direction 1kd   may be large. In other words, if 

1( )kH   is large, then the system (1.9) could be very sensitive to perturbations in 1.kg   

The idea of this paper is to select a value for the parameter k  in (1.10) in such a way to 

minimize the condition number of the iteration matrix 1.kH   Minimizing the condition 

number of the iteration matrix in conjugate gradient algorithms have also  been 

considered by Babaie-Kafaki and Ghanbari [8, 9] for Dai-Liao nonlinear conjugate 

gradient algorithm, or by Liu and Xu [25] for Perry descent conjugate gradient algorithm, 

leading them to efficient and robust conjugate gradient algorithms. 

The structure of the paper is as follows. The algorithm and its properties are presented in 

Section 2. We prove that the search direction used by this algorithm satisfies both the 

sufficient descent condition and the Dai and Liao conjugacy condition, independent of the 

line search. The parameter k  in the search direction (1.8) is determined by minimizing the 

condition number of the iteration matrix 1,kH   i.e., by clustering the singular values of this 

matrix around to 1. Using standard assumptions, Section 3 presents the global convergence 

of the algorithm for uniformly convex functions. In Section 4 the numerical comparisons of 

our algorithm versus CG-DESCENT [23] and ADCG [5] conjugate gradient algorithms are 

presented. The computational results, for a set of 800 unconstrained optimization test 

problems, show that this new algorithm substantially outperforms CG-DESCENT, and is 

slightly more efficient and more robust than ADCG. Considering five applications from the 

MINPACK-2 test problem collection [7], with 610  variables, we show that our algorithm is 

way more efficient and more robust than CG-DESCENT. 

2. The algorithm 

An important property of our conjugate gradient algorithm is that the search direction 

(1.8) always yields descent when 0,T

k ky s   a condition which is satisfied when f  is 

strongly convex, or the step length k  is computed according to the Wolfe conditions. 

The following properties of the search direction (1.8) can immediately be proved. 
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Theorem 2.1. If the step length 
k  in (1.2) is determined by the Wolfe line search 

conditions (1.5) and (1.6)  and 1/ 4,k   then the search direction (1.8) satisfies the 

sufficient descent condition 

 

2

1 1 1

1
1 0.

4

T

k k k

k

g d g


  

 
    

   (2.1) 

Proof. Since 0 0 ,d g   it follows that 
2

0 0 0 0.Tg d g    From (1.8) we get: 

 

2 2
2 1 1 1

1 1 1

( )( ) ( )
.

T T T
kT k k k k k k

k k k kT T T

k k k k k k

yy g s g s g
g d g

y s y s y s
  

     

 (2.2) 

Now, we apply the inequality  2 21

2

Tu v u v   to the second term in (2.2) with 

 

1

1
( )

2

T

k k k

k

u y s g




 and 12 ( )T

k k k kv s g y 
 

to obtain 

 

2 2
2 11 1 1 1

12 2

( )( )( ) ( )( )( ) 1
.

( ) 4 ( )

TT T T T T
k k kk k k k k k k k k k

k kT T T

k k k k k k k

y s gy g s g y g y s s g
g

y s y s y s




   
  

 

Therefore, introducing this estimation in (2.2) we get (2.1) showing that the search 

direction (1.8) satisfies the sufficient descent condition when 

 1/ 4.k    

If f is strongly convex or the line search satisfies the Wolfe conditions (1.5) and (1.6), 

then 0T

k ky s   and our computational scheme yield descent. Note that if 1/ 4,k   then 

1 1

T

k kg d   is bounded by 
2

1(1 1/ 4 ) ,k kg   while in some other computational schemes, 

for example, of Dai and Yuan [14, 15] only the negativity of 1 1

T

k kg d   is established.  

We note in passing that if 2,k   then from (2.1) 
2

1 1 1

7
,

8

T

k k kg d g    like in [22]. 

Another important property of the search direction (1.8) is that it satisfies the Dai and 

Liao conjugacy condition [12], which addresses to the inexact line search, but reduces to 

the old conjugacy condition 0T

k ky d   when the line search is exact. 

Theorem 2.2. Consider 0k   and the step length k  in (1.2) is determined by the 

Wolfe line search conditions (1.5) and (1.6). Then the search direction (1.8) satisfies the 

Dai and Liao conjugacy condition 1 1( ),T T

k k k k ky d v s g    where 0.kv   
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Proof. By direct computation we have 

 

2

1 1 1( ) ( ),
kT T T

k k k k k k k kT

k k

y
y d s g v s g

y s
  

 
    
    

where  

2

.
k

k k T

k k

y
v

y s
  By Wolfe line search conditions (1.5) and (1.6) it follows that 

0,T

k ky s   therefore 

 0.kv    

In the following we are interested to specify a procedure for 
k  computation in (1.8) 

based on minimizing the condition number of the iterate matrix 1,kH   given by (1.10). 

For this, we briefly present the singular value analysis and the condition number of a 

matrix. The following definitions and theorems, taken from Watkins [32], clarify some 

aspects of this concept of condition number of a matrix. 

Theorem 2.3. [32] Let n mA R   be a nonzero matrix with rank .r  Then, mR  has an 

orthonormal basis 
1, , ,mv v  nR  has an orthonormal basis 

1, , ,nu u  and there exist the 

scalars 1 2 0r       such that 

 

, 1, , ,

0, 1, , ,

i i

i

u i r
Av

i r m

 
 

   and 

, 1, , ,

0, 1, , .

i iT

i

v i r
A u

i r n

 
 

   (2.3) 

Definition 2.1. The scalars 1, , r   from the theorem 2.3 are called the singular values 

of the matrix .A   

Based on the Theorem 2.3, for any nonzero matrix n mA R   with rank r  it follows that    

 

2 2 2

1 ,rF
A    

 (2.4) 

where .
F

 represents the Frobenius norm. If ,r m n   then  

 1 2det( ) .nA      
 (2.5) 

As we mentioned, a very important concept in the sensitivity analysis of numerical 

computations with matrices is the matrix condition number. A matrix with a large 

condition number is called an ill-conditioned matrix since the computations with this 

matrix are potentially very sensitive to changes in data of the problem involving this 

matrix. 

Definition 2.2. For an arbitrary nonsingular matrix ,A  the scalar 1( )A A A   is 

called the condition number of .A   
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Theorem 2.4. [32] If n nA R   is a nonsingular matrix with the singular values 

1 2 0,n       then 1( ) / .nA     

Definition 2.3. The condition number ( )A  computed as above is called the spectral 

condition number.  

In our analysis we need to find the singular values of the matrix 
1.kH 

 For this, in our 

developments we assume that 0,T

k ky s   which is guaranteed by the Wolfe line search 

conditions (1.5) and (1.6). The structure of the singular values of the matrix 1kH   is given 

by the following theorem. 

Theorem 2.5. Suppose that the step length k  is determined by the Wolfe line search 

conditions (1.5) and (1.6). Let 1kH   be defined by (1.10). Then 1kH   is a nonsingular 

matrix and its singular values consist of 1 ( 2n   multiplicity), 1k


  and 1,k


  where: 

 

2 2

1

1
( 1) ( 1) ( 1) ( 1) ,

2
k k k k k k ka a a a  


        
   (2.6) 

 

2 2

1

1
( 1) ( 1) ( 1) ( 1) ,

2
k k k k k k ka a a a  


        
   (2.7) 

and  

 

2 2

2
1.

( )

k k

k T

k k

s y
a

y s
 

 (2.8) 

Proof. By the Wolfe line search conditions (1.5) and (1.6) we have that .0k

T

k sy  

Therefore, the vectors ky  and ks  are nonzero vectors. Let V  be the vector space 

spanned by }.,{ kk ys  Clearly, 2)dim( V  and .2)dim(  nV  Thus, there exist a set 

of mutually unit orthogonal vectors 


 Vu n

i

i

k

2

1}{  such that 

 
,0 i

k

T

k

i

k

T

k uyus
 

,2,,1  ni 
 

which from (1.10) leads to 

 1 ,i i

k k kH u u 
 

.2,,1  ni 
 

Therefore, the matrix 1kH   has 2n  singular values equal to 1.  

Now, we are interested to find the rest of the two remaining singular values denoted as 

1k

  and 1,k



  respectively. From the formula of algebra (see for example [31]) 

 
det( ) (1 )(1 ) ( )( ),T T T T T TI pq uv q p v u p v q u     
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where ,k

T

k k

s
p

y s
   ,kq y   

2

2( )

k

k kT

k k

y
u s

y s
  and ,kv s  it follows that  

 

2 2

1 2
det( ) ,

( )

k k

k k k kT

k k

s y
H a

y s
   

 (2.9) 

where 
ka  is given by (2.8).  

Since 0k   and 1ka  , it follows that 1kH   is a nonsingular matrix.  

Now, by direct computation we get: 

 
2 2

1 1( ) 2 .T

k k k k ktr H H n a a       (2.10) 

Since 
2

1 1 1( ),T
k k kF

H tr H H    from (2.4) we get 

 
2 2 2 2

1 1( ) ( ) .k k k k ka a   
   

 (2.11) 

Also, from (2.5) and (2.9) we have 

 1 1 .k k k ka   
  

 (2.12) 

Now, from (2.11) and (2.12), after some simple algebraic manipulations we obtain: 

 
2 2

1 1 2 ,k k k k k k ka a a    
    

 (2.13) 

Therefore, from (2.12) and (2.13), the remaining singular values 1k

  and 1k


  of 1kH   

are the roots of the following quadratic polynomial 

 
2 2 2 2 0.k k k k k k ka a a a        

 (2.14) 

Clearly, the other two singular values of the matrix 1kH   are determined from (2.14) as 

(2.6) and (2.7) respectively.  

Observe that 1ka   follows from Wolfe conditions and the inequality 

 

2

2
.

T
kk k

T

k kk

yy s

y ss


  

Observe that since 1ka   it follows that the singular values 1k

  and 1k


  are well 

defined by (2.6) and (2.7), respectively.  

The following two proposition prove some important properties of the singular values 

1k

  and 1.k


  
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Proposition 2.1. For the singular value 1k

  defined in (2.7), we have 1 1.k


    

Proof. Observe that if 1,k ka   then since 1 1,k k  
   from (2.12) we have that 

1 1.k

   On the other hand, if 1,k ka   then from (2.6) we have: 

 
1

1 1
( 1) ( 1) .

2 2
k k k k k k ka a a   
     

 (2.15) 

With this, from (2.12) it follows that  1 1.k

    

Proposition 2.2. For the singular value 1k

  defined in (2.6), we have 1 1.k


    

Proof. As in Proposition 2.1 above, if 1,k ka   then from (2.15) we have that 1 1.k

   

On the other hand, if 1,k ka   then from (2.6) we have 

 
1

1 1
( 1) (1 ) 1.

2 2
k k k k ka a  
     

  

Now, since 1,ka   from (2.12) and (2.13) it follows that both 1k

  and 1k


  are positive. 

Therefore, from the above propositions we have 1 10 1 .k k  
     From Theorem 2.4 

we have that  
1

1

1

( ) .k
k

k

H








 



 (2.16) 

As we have mentioned in Section 1 in order to enhance the numerical stability in the 

search direction computation, it is reasonable to determine the value of the parameter k  

in (1.8) by minimizing the condition number of 1.kH   In a simple computational scheme, 

from (2.16) we see that minimizing 1( )kH   is to minimize the distance between 1k

  

and 1.k

  Therefore, the optimal value of ,k  denoted *,k  is determined as: 

 
*

1 1argmin( ),k k k   
  

 (2.17) 

thus making 1k

  as close as possible to 1.k


  Since 1 10 1 ,k k  

     it follows that 

*
k  solution of (2.17) makes 1( ) 1kH    as close as possible to 1. From (2.6) and 

(2.7), a simple algebraic development shows that 
* 1

,k

ka
   (2.18) 

where 1ka   is given by (2.8). Therefore, for 1/k ka   the singular values of 1kH   are 

clustered around 1.  Notice that for 1/k ka   the matrix 1kH   from (1.10) becomes: 

 

1 2
.

T T

k k k k
k T

k k k

s y s s
H I

y s s
   

. 
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In the following, from Theorem 2.1, we observe that the necessary condition for the 

sufficient descent condition of the search direction is 1/ 4.k   Therefore, the condition 

for minimizing 1( )kH   is 4.ka   Now, we can define our algorithm as follows.  

If 4,ka   then we select 1/k ka   in (1.8) in order to achieve both the sufficient descent 

condition and minimizing the condition number 1( ).kH    Otherwise, the algorithm uses 

the Hestenes and Stiefel direction. Since the search direction (1.8) has the property of 

sufficient descent for any value 1/ 4,k   it follows that for any value of ,ka   where 

1 4   is a parameter, the singular values of the matrix 1kH   are clustered around 1. 

Therefore, the search direction of our algorithm is given by (1.3) where the parameter 
N  is computed as: 

 

1 1

2

1

, if ,

, if .

T T

k k k k
kT

k k kN

k
T

k k
kT

k k

y g s g
a

y s s

y g
a

y s







 




 


 



  (2.19) 

Our algorithm (1.3) with (2.19) can be considered as an adaptive conjugate gradient 

algorithm subject to the parameter 1 4.   If ,ka   then the search direction is 

triggered to the HS direction, otherwise the search direction is that specified in (1.8) with 

1/ ,k ka   where ka  is given by (2.8). We see that according to the value of the 

parameter   the behavior of our algorithm is closer to that of the HS algorithm, or to the 

algorithm given by (1.8) where 1/ .k ka    

Observe that our algorithm is a modification of the HS conjugate gradient algorithm 

based on the idea of minimizing the condition number of the matrix defined by the search 

direction (1.3) and (1.4). The CG-DESCENT algorithm proposed by Hager and Zhang 

[22] also is a modification of the HS conjugate gradient algorithm by ex abrupto deleting 

a term from the search direction for the memoryless quasi-Newton scheme of Shanno 

[30]. Again, using this approach we get a value for the parameter t  in the Dai and Liao 

conjugate gradient parameter (1.7) for which the condition number of the search matrix is 

minimized. Taking into consideration the above developments and using the procedure of 

acceleration of conjugate gradient algorithms presented in [2], the following algorithm 

can be presented. 

NCG Algorithm (New Conjugate Gradient Algorithm) 

Step 1. 

Select a starting point 0

nx   and compute: 0( ),f x  0 0( ).g f x  Select some 

positive values for   and   used in Wolfe line search conditions. Consider a 

positive value for the parameter .  (1 4  ) Set 0 0d g   and 0.k   

Step 2. 
Test a criterion for stopping the iterations. If this test is satisfied, then stop; 

otherwise continue with step 3. 
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Step 3. Determine the steplength 
k  by using the Wolfe line search (1.5) and (1.6). 

Step 4. Compute ,k k kz x d   ( )zg f z  and .k k zy g g   

Step 5. Compute: T

k k z ka g d  and .T

k k k kb y d   

Step 6. 

Acceleration scheme. If 0,kb   then compute /k k ka b    and update the 

variables as 
1 ,k k k k kx x d     otherwise update the variables as 

1 .k k k kx x d    

Step 7. Compute 
ka  as in (2.8). 

Step 8. Compute the search direction as in (1.3) where N

k  is computed as in (2.19). 

Step 9. Powell restart criterion. If 
2

1 10.2 ,T

k k kg g g   then set 1 1.k kd g    

Step 10. Consider 1k k   and go to step 2.   

If function f  is bounded along the direction ,kd  then there exists a stepsize k  satisfying 

the Wolfe line search (see for example [17] or [29]). In our algorithm when the Beale-

Powell restart condition is satisfied, then we restart the algorithm with the negative gradient 

1.kg   More sophisticated reasons for restarting the algorithms have been proposed in the 

literature [13], but we are interested in the performance of a conjugate gradient algorithm 

that uses this restart criterion associated to a direction which satisfies both the descent and 

the conjugacy conditions. Under reasonable assumptions, the Wolfe conditions and the 

Powell restart criterion are sufficient to prove the global convergence of the algorithm. The 

first trial of the step length crucially affects the practical behavior of the algorithm. At every 

iteration 1k   the starting guess for the step k  in the line search is computed as 

1 1 / .k k kd d    For uniformly convex functions the linear convergence of the 

acceleration scheme used in the algorithm NCG is proved in [2]. Clearly, the acceleration 

scheme improves the performances of the algorithm [2]. Numerical comparisons may 

drastically change by introducing acceleration. However, we are interested to see the 

performances of this algorithm equipped with an acceleration scheme. 

3. Global convergence analysis 

The global convergence analysis of the above algorithms is based on bounding the norm of 

the search direction, (see Gilbert and Nocedal, [19], Nocedal, [27] or Dai, et al [16]). In this 

section we prove the global convergence of the above algorithms under the following 

assumptions. Assume that:The level set  0: ( ) ( )nS x R f x f x    is bounded.  

(i) In a neighborhood N  of S  the function f  is continuously differentiable and 

its gradient is Lipschitz continuous, i.e. there exists a constant 0L   such 

that ( ) ( ) ,f x f y L x y     for all , .x y N  
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Since { ( )}kf x  is a decreasing sequence, it is clear that the sequence { }kx  generated by 

the proposed algorithm NCG is contained in .S  Under these assumptions on f  there 

exists a constant 0   such that ( )f x   for all .x S  Notice that the assumption 

that the function f  is bounded below is weaker that the usual assumption that the level 

set is bounded.  

Although the search directions generated by the algorithm are always descent 

directions, to ensure convergence of the algorithm we need to constrain the choice of 

the step-length .k   

The following proposition shows that the Wolfe line search always gives a lower bound 

for the stepsize .k  

Proposition 3.1. Suppose that kd  is a descent direction and the gradient f satisfies the 

Lipschitz condition 

 
( ) ( )k kf x f x L x x   

 

for all x  on the line segment connecting kx  and 1,kx   where L  is a positive constant. If 

the line search satisfies the Wolfe conditions (1.5) and (1.6), then 

 

2

(1 )
.

T

k k

k

k

g d

L d







  

Proof. Subtracting 
T

k kg d  from both sides of (1.6) and using the Lipschitz continuity we 

get 

2

1( 1) ( ) .T T T

k k k k k k k k k k kg d g g d y d y d L d      
 

Since kd  is a descent direction and 1,   we get the conclusion of the proposition ■ 

For any conjugate gradient method with strong Wolfe line search the following general 

result holds [27]. 

Proposition 3.2. Suppose that the above assumptions hold. Consider a conjugate 

gradient algorithm in which, for all 0,k   the search direction kd  is a descent direction 

and the stepsize k  is determined by the Wolfe line search conditions. If 

 

2
0

1
,

k kd

 
 (3.1) 

then the algorithm converges in the sense that 

 
liminf 0.k

k
g




 (3.2) 
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For uniformly convex functions we can prove that the norm of the direction 
1kd 
 

computed as in (1.3) with (2.19) is bounded above. Therefore, by proposition 3.2 we can 

prove the following result. 

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm 

NCG where the search direction 
kd  is given by (1.3) and N

k  is computed as in (2.19). 

Suppose that 
k  is computed by the Wolfe line search. Suppose that f  is a uniformly 

convex function on ,S  i.e. there exists a constant 0   such that 

 

2
( ( ) ( )) ( )Tf x f y x y x y    

 (3.3) 

for all , .x y N  Then 

 
lim 0.k
k

g



 (3.4) 

Proof. From Lipschitz continuity we have .k ky L s  On the other hand, from uniform 

convexity it follows that 
2
.T

k k ky s s  Now, using (2.19) in (1.3) for ,ka   we have 

 

1 1

1 1 2

T T

k k k k

k k k kT

k k k

y g s g
d g s s

y s s

 

   
2 2

k k k k

k k

y s s s

s s

 
    2 ,

L




  

 

showing that (3.1) is true. Again, using (2.19) in (1.3) for ka   it follows that 

 

1

1 1 ,

T

k k

k k kT

k k

y g L
d g s

y s 



 


    

 

showing that (3.1) is true. By proposition 3.2 it follows that (3.2) is true, which for 

uniformly convex functions is equivalent to (3.4)  

The convergence analysis for general nonlinear functions follows the developments given 

by Hager and Zhang [22]. If the level set S  is bounded, the Lipschitz condition 

( ) ( )f x f y L x y     holds and the step length satisfies the Wolfe conditions (1.5) 

and (1.6), then for the algorithm (1.2), (1.3) and (2.19) either 0kg   for some k  or 

liminf 0k kg   (see theorem 3.2 in [22]). 

4. Numerical results and comparisons 

The NCG algorithm was implemented in double precision Fortran using loop unrolling of 

depth 5 and compiled with f77 (default compiler settings) and run on a Workstation Intel 

Pentium 4 with 1.8 GHz. We selected a number of 80 large-scale unconstrained 

optimization test functions in generalized or extended form presented in [1]. For each test 

function we have considered 10 numerical experiments with the number of variables 

increasing as 1000,2000, ,10000.n   The algorithms compared in this section use the 
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Wolfe line search conditions with cubic interpolation [31], 0.0001,   0.8   and the 

same stopping criterion 610 ,kg 


 where .


is the maximum absolute component of 

a vector.  

Since, CG-DESCENT [23] is among the best nonlinear conjugate gradient algorithms 

proposed in the literature, but not necessarily the best, in the following we compare our 

algorithm NCG versus CG-DESCENT.  

When the algorithms are compared we can consider at least two points of view: the first is 

based on the optimal point generated by the algorithm, and the second one is using the 

objective function value in this point.  

Since all the algorithms used and compared in this paper generate local solutions, we 

compare them by using the point of view based on the objective function value in the 

point determined by the algorithms.  

Therefore, the comparisons of algorithms are given in the following context. Let 
1ALG

if and 2ALG

if  be the optimal value found by ALG1 and ALG2, for problem 

1, ,800,i   respectively.  

We say that, in the particular problem ,i  the performance of ALG1 was better than the 

performance of ALG2 if:  

 

1 2 310ALG ALG

i if f  
 (4.1) 

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), 

or the CPU time of ALG1 was less than the number of iterations, or the number of 

function-gradient evaluations, or the CPU time corresponding to ALG2, respectively. 

Possibly, some other points of view for comparing the algorithms can be used, but in this 

paper we consider this one.  

Of course, the test problems where the algorithms do not converge to the same function 

value, according to criterion (4.1), are discarded from comparisons.  

Figure 1 shows the performance profiles of Dolan-Moré [18] subject to CPU time metric 

for different values of parameter .  That is, for each method, we plot the fraction of 

problems for which the method is within a factor of the best time. The left side of the 

figures gives the percentage of the test problems for which a method is the fastest; the 

right side gives the percentage of the test problems that are successfully solved by each of 

the methods. Clearly, the top curve corresponds to the method that solved the most 

problems in a time that was within a factor of the best time. Form figure 1, for example 

for 1.1,   comparing NCG versus CG-DESCENT with Wolfe line search, subject to the 

number of iterations, we see that NCG was better in 618 problems (i.e. it achieved the 

minimum number of iterations for solving 618 problems), CG-DESCENT was better in 

98 problems and they achieved the same number of iterations in 53 problems, etc. Out of 

800 problems, we considered in this numerical study, only for 769 problems does the 

criterion (4.1) hold. 
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Fig. 1. NCG versus CG-DESCENT for different values of .  

From figure 1 we see that for different values of the parameter   NCG algorithm is more 

efficient and more robust than CG-DESCENT. In comparison with CG-DESCENT, on 

average, NCG appears to generate better search direction. We see that this computational 

scheme based on clustering the singular values of the matrix representing the search 

direction (1.3) and (2.19) lead us to a conjugate gradient algorithm which substantially 

outperforms the CG-DESCENT, being way more efficient and more robust. In the second 

set of numerical experiments we compare NCG versus ADCG algorithm [5].  
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The ADCG is an adaptive conjugate gradient algorithm where the search direction is 

computed as the sum of the negative gradient and a vector determined by minimizing the 

quadratic approximation of the function f  at the current point. Using a special 

approximation to the inverse Hessian of the objective function, which depend by a 

positive parameter, a search direction is obtained which satisfies both the sufficient 

descent condition and the Dai-Liao’s conjugacy condition. The parameter in the search 

direction is determined in an adaptive manner by minimizing the largest eigenvalue of the 

matrix defining it in order to cluster all the eigenvalues. The search direction in ADCG 

algorithm is computed as 

 1 1 1,
ADCG
k k kd Q g     (4.2) 

where  

 

2

1 ,
T T T

kk k k k k k
k kT T T

k k k k k k

ys y y s s s
Q I

y s y s y s



  

 (4.3) 

and the parameter k  is determined in such a way to cluster all its eigenvalues. In [5] the 

parameter k  is computed as: 

 

2
,

T
k k

k k

k

y s
t

y
 

 (4.4) 

where 

 

2 1 / , if ,

0 otherwise,

k k k
k

y s a
t

   
 
  (4.5) 

ka  is defined by (2.8), and 1   is a positive constant. Therefore, the ADCG algorithm 

is based on clustering the eigenvalues of the search direction matrix (4.3). On the other 

hand, the NCD algorithm is using the clustering of the singular values of search direction 

matrix (1.10). Observe the differences between 1kH   given by (1.10) used in NCG 

algorithm and 1kQ   given by (4.3) used in ADCG algorithm. We see that 

1 1 / .T T
k k k k k kQ H y s y s    Both these matrices 1kH   and 1kQ   are not symmetric 

matrices, as usual in quasi-Newton methods. They are used in these algorithms in order to 

find the values of parameter k  to cluster the singular values of 1kH   or the eigenvalues 

of 1kQ  , respectively. In [5] we have the computational evidence that ADCG is not 

sensitive to the values of the parameter ,  and is way more efficient and more robust 

than CG-DESCENT.  

In Figure 2 we present the performance profiles of Dolan-Moré subject to CPU time 

metric, of NCG versus ADCG, for different values of the parameters   and .  
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Fig. 2. NCG versus ADCG for different values of   and .  
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The NCG algorithm is based on minimizing the condition number of the matrix defining 

the search direction, i.e., on clustering the singular values around 1. On the other hand, 

the ADCG algorithm is based on clustering the eigenvalues of the same matrix. In Figure 

2 we have the computational evidence that NCG algorithm is slightly more efficient and 

more robust than ADCG for any combination of parameters   and .  From Figure 2 we 

see that both algorithms are not sensitive to the values of these parameters. Practically, all 

performance profiles have the same allure for any combination of   and .  Singular 

values analysis in designing conjugate gradient algorithms is more profitable subject to 

efficiency and robustness, but this is not overwhelming, both concepts (singular values 

and eigenvalues) leading to very similar results. (see also [4]). 

In the following, in the third set of numerical experiments, we present comparisons 

between NCG and CG-DESCENT conjugate gradient algorithms for solving some real 

applications from the MINPACK-2 test problem collection [7]. In Table 1 we present 

these applications, as well as the values of their parameters.  

Table 1  

Applications from the MINPACK-2 collection. 

A1 Elastic–plastic torsion ([20], pp. 41–55), 5c   

A2 Pressure distribution in a journal bearing [11], 10,b   0.1   

A3 Optimal design with composite materials [21], 0.008   

A4 Steady-state combustion ([6], pp. 292–299), [10], 5   

A5 Minimal surfaces with Enneper conditions ([26], pp. 80–85) 

The infinite-dimensional version of these problems is transformed into a finite element 

approximation by triangulation. Thus a finite-dimensional minimization problem is 

obtained whose variables are the values of the piecewise linear function at the vertices of 

the triangulation. The discretization steps are 1,000nx   and 1,000,ny   thus obtaining 

minimization problems with 1,000,000 variables. 

Table 2  

Performance of NCG versus CG-DESCENT. 1,000,000 variables. 4,   CPU seconds.  

 NCG CG-DESCENT 

 #iter #fg cpu #iter #fg cpu 

A1 1113 2257 351.62 1145 2291 474.64 

A2 2843 5714 1143.97 3370 6741 1835.51 

A3 4725 9494 2754.26 4814 9630 3949.71 

A4 1413 2864 2014.17 1802 3605 3786.25 

A5 1270 2566 571.45 1225 2451 753.75 

TOTAL 11364 22895 6835.47 12356 24718 10799.86 
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A comparison between NCG (Powell restart criterion, 6( ) 10 ,kf x 


   

0.0001,  0.8  , 4  ) and CG-DESCENT (version 1.4, Wolfe line search, default 

settings, 6( ) 10 ,kf x 


  ) for solving these applications is given in Table 2. Form Table 2, 

we see that, subject to the CPU time metric, the NCG algorithm is top performer and the 

difference is significant, about 3964.39 seconds for solving all these five applications. It is 

worth saying that intensive numerical experiments for solving the applications from 

MINPACK-2 collection with different values of the parameter 1 4   mainly yield similar 

results concerning the numerical performances of NCG algorithm. In all cases, for all these 

numerical experiments, NCG was top performer versus CG-DESCENT. The NCG and CG-

DESCENT algorithms (and codes) are different in many respects. Since both of them use the 

Wolfe line search (however, implemented in different manners), these algorithms mainly differ 

in their choice of the search direction. The search direction 
1kd 
 given by (1.3) where the 

parameter N

k  is computed as in (2.19) is more elaborate: it is adaptive and the singular values 

of the matrix defined by it are clustered around 1. In addition it satisfies both the descent 

condition and the conjugacy condition in a restart environment.  

5. Conclusions 

A new adaptive conjugate gradient algorithm based on singular values study of the search 

direction matrix has been presented. The idea of this paper is to generalize the search direction 

of CG-DESCENT conjugate gradient algorithm of Hager and Zhang [22] by introducing a 

positive parameter k  instead of constant 2 used in conjugate gradient parameter .HZ
k  At the 

same time, the paper contains a development for a value of the positive parameter t  used in 

conjugate gradient parameter DL
k  from the Dai-Liao’s conjugate gradient algorithm [12]. The 

value of this parameter is computed in such a way that the condition number of the matrix 

defining the search direction is minimized. Mainly, in our algorithm, minimizing the condition 

number of the iteration matrix defining the search direction reduces to determine the value of 

the parameter to minimize the distance between the singular values of the corresponding 

matrix, i.e., to cluster the singular values around 1. It is proved that the search direction satisfies 

both the sufficient descent condition and the Dai-Liao’s conjugacy condition. Thus, the 

algorithm is a conjugate gradient one. To satisfy both the clustering of the singular values and 

the sufficient descent condition an adaptive scheme is used which depend by a positive 

parameter. The algorithm is not sensitive to the value of this parameter. The stepsize is 

computed using the classical Wolfe line search conditions with a special initialization. In order 

to improve the reducing the values of the objective function to be minimized an acceleration 

scheme is used. For uniformly convex functions, under classical assumptions, the algorithm is 

globally convergent. Numerical experiments and intensive comparisons using 800 

unconstrained optimization problems of different dimensions and complexity proved that this 

conjugate gradient algorithm is way more efficient and more robust than CG-DESCENT 

algorithm [23], and slightly more efficient and more robust than ADCG algorithm [5]. In an 

effort to see the performances of this conjugate gradient algorithm we solved five large-scale 

real nonlinear optimization applications from MINPACK-2 collection, up to 610  variables, 

showing that NCG is clearly more efficient and more robust than CG-DESCENT. 
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