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TAKING ENERGY FROM ENVIRONMENT 

Eliade ȘTEFĂNESCU
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Abstract. In this paper, we formulate a physical principle, and propose a semiconductor 

device producing coherent electromagnetic energy by heat absorption from the 

environment. This device is a superradiant semiconductor chip, included in a Fabry-

Perot cavity, and in intimate contact with a huge radiator. This radiator is designed for a 

very efficient heat transfer from the environment to the semiconductor structure, which by 

operation becomes colder than the environment. This structure is composed of a packet of 

n-i-p-n semiconductor elements that we call superradiant transistors, operating by 

current injection. On the basis of a physical model of the dissipative superradiant 

dynamics, we recently elaborated in the framework of the quantum theory of open 

systems, we show that the energy of the electromagnetic field radiated by quantum 

transitions in the emitter-base junctions is much larger than the energy electrically 

dissipated by injection of electrons, the energy difference being obtained by heat 

absorption in the base-collector junction. 

Keywords: superradiant semiconductor chip, heat transfer from the environment, quantum theory 

of open systems 

1. Introduction 

The most energy production is based on a discovery made 500’000 years ago: the 

fire. Nowadays, the most motors or energy generators, called thermal 

motors/generators, operate by using a burning 

process (Fig. 1). With an active fluid and an 

appropriate mechanical system, the heat 

obtained by burning a fuel is partially 

converted into usable energy. By the burning 

process, the temperature of the active fluid is 

increased from the initial temperature 0T  to 

the final temperature 1T , while an energy 

 1 0N T T   is absorbed by this fluid, where 

N  is the number of molecules, and   is the 

number of the degrees of freedom. By an adiabatic expansion, while temperature 

decreases from 1T  to 2T , a usable energy  1 2N T T   is obtained. To close the 

operation cycle, the temperature of the active fluid is decreased from 2T  to 0T , 
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Fig. 1. Motor, converting the heat   

into usable energy 
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while a residual heat  2 1N T T   is transferred to the environment (Fig. 2). More 

than that, the operation of a 

thermal motor burdens the 

environment not only with the 

residual heat of the thermal cycle, 

but also with poisonous chemical 

residues, resulting from the 

burning process. 

An ecological method of energy 

generation is based on the 

principle of the hydroelectric 

plant (Fig. 3). In this case, a fall 

of water from the potential energy 

1U  to the potential energy 2U  

provides a usable energy 

LEUUE  21 , where we have 

taken into account an energy loss 

LE . It is interesting to note that in 

a system with a much lower 

intermediate state of potential 

energy 120 UUU  , the usable 

energy remains of the form 

LEUUE  21 , no matter the 

large energy fall 01 UU   that, in 

a classical system, is mostly 

cancelled by the energy raise 

02 UU   (Fig. 4).  

However, in a quantum system, as 

the semiconductor structure 

represented in Fig. 5, things are 

totally different. If the large 

energy fall 01 EE   is a quantum 

transition, we can derive 

advantage from the superradiance 

effect. In this case, an important 

part of the energy 01 EE   can be 

extracted outside as a coherent electromagnetic energy flow, which can be easily 

Fig. 3. The operation of a hydroelectric plant. 

Fig. 4. The operation of a hydroelectric plant with  

an intermediate lower level. 

Fig. 5. Superradiant transistor, converting the 

environmental heat into usable energy. 

Fig. 2. The operation of a thermal motor. 
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converted into electrical energy [1-3]. The electromagnetic power, being an 

important fraction the decay power I
e

EE 01  , is much higher than the electric 

power  IUU cc 1  that is dissipated by the electric current I  injected in the 

device.  

We consider a semiconductor device as a packet of superradiant transistors as 

represented in Fig. 5, in a Fabry-Perot cavity selecting a superradiant mode. In 

comparison with another device previously proposed by us for converting the 

environmental heat into electromagnetic energy [4], where the electron transfer 

through the base-collector junction is made by optical excitations, now we 

consider a superradiant transistor, with thermal excitation of electrons on a deep-

level path. Thus, while a heat is absorbed by the base-collector junctions, a 

coherent electromagnetic field is generated by the emitter-base junctions due to a 

superradiance effect. We describe the superradiant quantum transitions by using a 

quantum master equation we recently derived for a system of fermions in a 

dissipative environment of other fermions, bosons, and a free electromagnetic 

field [5]. 

In this paper, we study the dissipative superradiant dynamics of the system as a 

function of the main physical parameters of the system for two configurations of 

the device: (a) a longitudinal device, when the radiation field propagates in the 

same direction as the injected current, and (b) a transversal device, when the 

radiation field propagates perpendicularly to the injection current, i.e. in the plane 

of the semiconductor chip. In Sec. 2, we describe the dynamics of the system as a 

function of the main couplings involved in the superradiation process: (1) the 

electric dipole coupling of the active electron system with the superradiant mode, 

(2) the radiation process of the superradiant field, (3) the dipole-dipole coupling 

of the active electrons with the quasi-free electrons in the neighboring conduction 

regions, (4) the polarization fluctuations of the active electrons induced by the 

thermal fluctuations of the self-consistent field of the conduction electrons, which 

are a non-Markovian effect, (5) the coupling of the active electrons with the 

crystal lattice vibrations, (6) the polarization-population coupling induced by 

multiple reflections in the Fabry-Perot cavity, (7) the coupling of the active 

electrons with the free electromagnetic field. In Sec. 3, we represent the 

coefficients of the dissipative superradiant dynamics as functions of the physical 

parameters of the system. In Sec. 4, we describe the electron excitation with heat 

absorbsion in the base-collector junction. In Sec. 5, we consider the steady state of 

the system as a function of the radiation-dissipation characteristics, and study the 

dependence on the width of the intrinsic zone i of the main parameters of the 

system: coupling coefficients, dissipation coefficients, the density of quantum 

dots in the active layer, and the threshold currents. We calculate the radiation 
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power as a function of the injected current for some values of the device 

parameters. In Sec. 6, we study the time-dependence of the superradiant power, 

polarization, and population, when a step current is injected in the device. We 

show that the thermal fluctuations of the self-consistent field of the conduction 

electrons induce oscillations of the superradiant power that are not negligible. In 

Sec. 7 we give some conclusions.  

2. Dissipative superradiant dynamics 

We describe the dissipative dynamics of a system of electrons interacting with an 

electromagnetic field by the quantum master equation 
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with the Hamiltonian  

VHHH FS  0                                                     (2) 

including the terms 

 
k

kkk

S ccH 0                                                       (3) 

for the system of electrons, 

 1 







 aaaaH F                                                 (4) 

for the two counter-propagating waves of the electromagnetic field in the 

Fabry-Perot cavity, and 

Ap
M

e
V


                                                            (5) 

for the interaction potential. This potential depends on the momentum of the 

system 

 
ij

jiijij ccriMp
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                                                     (6) 
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 ikxikxikxikx eaeaeaeaK
e

A 









 


                                 (7) 



 

  

 Taking Energy from Environment 11 

 

of the electric field 

 ikxikxikxikx eaeaeaeaK
e

iE 









 
 

                           (8) 

propagating in the x-direction. In these expressions, jiij    is the energy of 

a transition ji  , ijr


 is the dipole moment of this transition, and 

V


yK 1


  is a vector in the y-direction of the field, depending on the fine-

structure constant 
137

1

4

2


c

e


 , the field wavelength 

k




2
 , and the 

quantization volume of the electromagnetic field V . 

The dissipative generator of this equation is composed of a Hamiltonian part with 

the matrix elements ij  that describe transitions stimulated by the fluctuations of 

the self-consistent field of the environment particles, a Markovian part of 

Lindblad’s form with the decay rates ij  that describe correlated transitions of the 

system and environment particles, and a non-Markovian part, as a time-integral of 

the system operators, describing memory effects, which are proportional to the 

fluctuations of the self-consistent field of the environment particles. We do not 

diagonalize the dissipative Hamiltonian  

ij

jiij cc  since the matrix elements ij  

describe fluctuations that arise in any basis of states. The dissipative coefficients 

of the Markovian part  

ij

B

ij

F

ijij                                                    (9) 

include explicit terms for the coupling with an environment of Fermions, Bosons 

and the free electromagnetic field. These terms depend on the dissipative 

two-body potentials FV , BV , the densities of the environment states   Fg , 

  Bg , the occupation probabilities of these states   Ff ,   Bf , and 

temperature T. For a rather low temperature, jiT  , ij  , these terms are 

    ji

F
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2
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for the Fermi environment of quasi-free electrons, 
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for the Bose environment of lattice vibrations, and 
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for the Bose environment of the free electromagnetic field, where ijr


 are the 

transition dipole moments. The terms with the dissipative coefficients (9)-(12) of 

the master equation (1) describe single-particle transitions of the system and 

environment, with energy conservation,  ji , in agreement with the quantum-

mechanical principles, and with the detailed balance principle [6]. The non-

Markovian part of this equation takes into account the fluctuations of the self-

consistent field of the environment Fermions, as a function of the coefficients 

     
 


  dgfjVi
Y

FFF

Fij

211


                   (13) 

where FY  is the total number of these particles occupying the states  . In 

equation (1),  t  is a phase-operator describing fluctuations induced by the 

thermal fluctuations of the self-consistent field of the environment particles, while 

  is a memory time, that is much longer than the fluctuation time of this field, but 

much shorter than the decay/excitation times and the period of the Rabi oscillation 

that characterizes the Hamiltonian dynamics. We notice that the fluctuation 

Hamiltonian  

ij

jiij cc  in (1) is similar to the hopping Hamiltonian (3) in [7]. 

Besides this fluctuation Hamiltonian, a non-Markovian term of the second-order 

in the fluctuation matrix elements ij  arises from the dissipative quantum 

dynamics in the approximation of a weak dissipative coupling.  

We consider the quantum master equation (1) for a two-level system and derive 

optical equations in the approximation of the slowly varying amplitudes of the 

non-diagonal elements 

         tiikxikx eetettt  

  SS
2

1*

0110 ,                   (14) 

with the amplitude 

     tivtut S ,                                           (15) 
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and of the population difference 

     tttw 0011   ,                                      (16a) 

with the normalization condition 

)()(1 0011 tt   .                                        (16b) 

At the same time we consider the mean-value electric field is of the form 
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

 

2

1
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with the amplitude 

      ikxikx etett 

  EEE                                   (18) 

satisfying the boundary condition: 

   tt   ETE


1 ,                                      (19) 

where T  is the transmission coefficient of the output mirror. With a notation 

similar to (15) for the amplitude of the electric field 

     titt GFE  ,                                        (20) 

from the master equation (1) we get equations of the mean-values: 
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where nn  /1 , 

Er
e

g 110




                                                      (22) 

is the coupling coefficient of the electron system with the dipole moment 10r


 with 

the electromagnetic field with the polarization vector E1


, 

1001                                                     (23) 

is the dephasing rate, 

 1001|| 2                                                    (24) 

is the decay rate, 

0011  n                                                   (25) 

is the fluctuation rate,  
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


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
Tw                                                 (26) 

is the equilibrium population, 









 0                                                   (27) 

is the relative detuning, I is the injected electron flow,V  is the quantization 

volume, A  is the radiation area from the quantization volume, and F  is the 

decay rate of the superradiant field. 

3. Dependence on physical parameters 

We consider a superradiant device, as a semiconductor chip with the area DA  and 

the thickness DL , including a number tN  of n-i-p superradiant transistors, in two 

versions: (a) a longitudinal device with the two mirror metallization 1M and 2M  

made on the two surfaces in the plane of the chip, of transmission coefficients 

00 T and 0T , respectively, coupling the superradiant mode that propagates in 

the x-direction of the injection current (Fig. 6), and (b) a transversal device with the 

two mirror metallization 1M and 2M made on two lateral surfaces of the chip, of 

transmission coefficients 00 T  and 0T , respectively, coupling the superradiant 

mode that propagates in the y-direction, perpendicular to the injection current (Fig. 

7). While in version (a) the roles of mirrors and injection electrodes are played by 

the metallization 1E  and 2E , made on the two surfaces in the plane of the chip, in 

version (b) the mirror metallization 1M and 2M , which are made on two lateral 

surfaces, are different from the electrode metallization 1E  and 2E .  
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The two devices have the same semiconductor structure including GaAs  layers, 

with a narrower forbidden band and a heavier doping, for the quantum wells, and 

AsGaAl xx 1  layers, with a larger forbidden band and a lighter doping, for the 

potential barriers.  

The margins of these bands are determined by the concentrations of the 

donors/acceptors embedded in the semiconductor layers. For the potential 

distribution, we consider a simple rectangular model taking into account the 

Fig. 6. Superradiant transistor in a longitudinal configuration. 

Fig. 7. Superradiant transistor in a transversal configuration. 
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essential characteristics of the system. The margin cU ( vU ) of the conduction 

(valence) band of the conduction region n (p), depends on the donor (acceptor) 

concentration DN ( AN ), and temperature T : 
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The two potentials ,1U  2U  of the active quantum system depend on the quantum 

dot density eN , of pairs of donors and acceptors embedded in the two layers na 

and pa, respectively, and temperature: 
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Similar expressions are obtained for the potentials 3U  and 4U  of the separation 

barriers as functions of the donor and acceptor concentrations 3N  and 4N . The 

two potential wells 1U  and 2U  have the ground state energies 1E  and 0E  as 

solutions of the equations:  
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The superradiant Fabry-Perot cavity of the device, which is resonant to the 

transition frequency, has a length equal to a an integer number of wave-lengths, 

with the active zones of the na-i-pa layers placed for the strongest coupling to the 

superradiant mode, and the p-n quasi-ohmic contacts between two successive 

junctions placed for the weakest coupling to the superradiant mode. Thus, in a 

longitudinal device, the active zones are placed at the maximum-field points of 
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the superradiant cavity, while the quasi-ohmic contacts are placed at the 

minimum-field points of the cavity. In a transversal device, the active zones are 

placed at the zero-field points of the cavity formed by the two electrodes 1E  and 

2E  of the structure, thus favoring the coupling to the perpendicular superradiant 

mode. In the longitudinal device, the electromagnetic field is coupled to the dipole 

moment with the most probable values 
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due to the quasi-free thermal motion of the electrons at temperature T  in the two 

active arrays of the quantum dot system, where 
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is the overlap function of the two states on the x-coordinate, while 
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are normalization coefficients. In the transversal device, the electromagnetic field 

is coupled to the dipole moment 
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determined by the separation distance 02 xx   between the two wave-functions of 

the active system, and their attenuation coefficients 1 , 0  in the i-zone 

separating these wave-functions. Both these moments are proportional to the 

overlap function  xc01  of the x-wave functions in the i-zone. It is interesting that, in 

the numerical case considered in the next section, these two dipole moments are 

approximately of the same order of magnitude. 

Considering the dipole-dipole coupling of the active electrons with the 

environment particles, we obtained explicit expressions of the dissipative 

coefficients. For the decay and dephasing rates (23)-(24), we get 

EMPE

|||||||| 2    ,                                   (35) 
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where E

||  stands for the electric coupling to the conduction electrons, P

||  for the 

phonon coupling to the crystal lattice vibrations, and EM

||  for the coupling to the 

free electromagnetic field. The electric decay rate has two components for the 

interaction with the two conduction regions n and p: 

   pnE

||||||   .                                               (36) 

For the two components of the electron decay rates, we get 
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These two expressions describe dipole-dipole couplings of an active electron to the 

quasi-free electrons in the two conduction regions n and p, which are inverse 

proportional to the separation distances 3

3/1

2
x

ND 


 and 5

3/1

2
x

NA 


 with power 3, 

respectively. The electron decay rates (37) and (38) decrease with the transition 

energy 0110 EE   of an active electron, an increase of this energy leading to 

transitions of the environment particles into states with wave-functions more rapidly 

varying in space, and forming smaller dipole moments. The phonon decay rate 
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where 2McEe   is the rest energy of the electron and 1


  are the polarization vectors 

of the phonon modes, essentially depends on the transition energy 10   with power 5, 

the square of the dipole moments 01r


, 10r


, temperature T , and the sound velocity 
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D

E
v                                                        (41) 

as a function of the Young elasticity coefficient E  and the crystal density D . The 

electromagnetic decay rate 
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also depends on the square of the dipole moment 01r


 and temperature T , but on 

the transition energy 10  with power 3. In the numerical case in the next section, 

the phonon decay rate (40) dominates the electron decay rate (36)-(39), while the 

electromagnetic decay rate (42) is negligible. The non-Markovian coefficient 

depends on the relative fluctuations between the two levels, induced by the two 

components n and p of the environment: 
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The non-Markovian coefficient (43)-(44) arises due to the distance difference of 

the two states from the two conduction regions: the field fluctuations of a 

conduction region have a stronger influence on the closer state than on the farer 

one. It is interesting to notice that these fluctuations occur like a near-field effect, 

strongly decreasing with the distance and with the quantum dot density eN . 

4. Electron excitation with heat absorption in the base-collector junction 

The superradiant power is a result of the electron transitions with the energy 0  

and of the dissipation-radiation processes in the active quantum system as is 

described by equations (21).  

However, the operation of the device is based also on another process, of electron 

transfer from the p-region of the base to the n-region of the collector. This process 

involves a quasi-ohmic contact between these two regions, i.e. the existence of a 

deep-level path crossing the energy gap of the base-collector junction as in Fig. 5. 

On this deep level path the electrons are carried up by the internal field of the p-n 

contact junction, while the energy of this field is recovered by heat absorption, by 

the electrons building up this field by diffusion. This electron transfer by the 

internal field of a junction is similar to the transistor effect with the difference that 

in an ordinary bipolar transistor the electrons cross the base-collector junction 

decaying through the conduction band, with energy dissipation, while here the 

electrons go up, absorbing energy from the internal field.  

This phenomenon can be understood from statistical reasons. From Fig. 5, we 

notice that the injected current I  increases the population of the lower states and 

decreases the population of the higher states of the deep level path. That means 

that this region becomes colder, absorbing heat from the environment. This heat 

absorption has the tendency to remake the initial statistical distribution, modified 

by current injection.  

In the calculations above we neglected the temperature variation due to the heat 

transfer throughout the semiconductor structure. To take into account this 

temperature variation, one has to make corrections of the parameters, to obtain the 

same transition frequency on the whole chain of superradiant junctions. 

5. Steady state 

From the system of equations (21) for the resonance case ( 0 ), we calculate 

the flow density of the electromagnetic energy radiated by the device: 

 22

2

1
GFTP  c .                                        (45) 

We get 
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With the radiation areas A of a quantum dot for a longitudinal and a transversal 

device, respectively, from (46) we derive the flow densities LP and TP , and the 

total flows of the electromagnetic field radiated by these devices: 
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as a function of the injected current IDe AeNI   and the threshold currents 
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where we used the notation L1 for the unit length. The threshold current is 

proportional to the population threshold that includes three terms for the three 

dissipative processes that must be balanced by current injection for creating a 

coherent field: (1) the threshold value Tw , necessary to reach an inversion state 

of the population, (2) the population inversion proportional to the light velocity 

c and the transmission coefficient T , necessary to balance the radiation of the 

field, and (3) the population inversion proportional to decay rate F , necessary to 

balance the dissipation of the field. The second term arises only due to the 

openness of the cavity, while for a closed cavity, when 0T  and no energy is 

lost by radiation, this term vanishes. 

In the following, we study a few essential dependences of the dissipative 

coefficients. In Fig. 8 we represent the components 
E

|| , 
P

|| , 
EM

||  of the decay 

rate || , and the non-Markovian coefficient n  as functions of the width 02 xx   of 
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the i-zone that essentially determines the overlap of the two wave functions of the 

initial and final states and, by this, the transition dipole moment. First of all, we 

notice that the electromagnetic decay rate EM

||  is negligible in comparison with 

the electric and phonon decay rates E

|| , P

|| , and that the phonon decay dominates 

the other decay processes. We also notice that the variation of the decay rates with 

the width of the i-zone is very strong, while the dependence of the non-Markovian 

coefficient n  is weak, this coefficient being essentially determined by the 

distance between the active electrons and the quasi-free electrons in the 

conduction regions. The non-Markovian coefficient n  is much larger than the 

decay rates, this coefficient describing fluctuations of a mean-time n/1   much 

shorter than the decay time ||/1  . 

 
Fig. 8. The dependence of the dissipative coefficients on the width of the i-zone. 

In Fig. 9 we represent the dependence on the width 02 xx   of the coupling 

coefficients Lg , Tg . We notice that the two coefficients Lg  and Tg  are of the 

same order of magnitude. However, as one can notice also from (31)-(34), the 

dependence on 02 xx   of the coupling coefficient to the transversal mode Tg , 

which is proportional to  

01x , is weaker than that of the coupling coefficient to the 

longitudinal mode Lg , which is proportional to 
       100101 yyy .  

In Fig. 10 we represent the dependence on the width 02 xx   of the threshold 

currents. The decrease of these currents with 02 xx   is determined by the decrease 

of the decay rate || . The threshold current for the transversal configuration is 

lower than that of the longitudinal configuration due to the factor 2/1/ DD AL  

affecting the radiation term in the inversion population (48b). From Fig. 10b, we 
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notice that although the threshold current increases with the transmission 

coefficient T  according to (48), it remains under the maximum value of the 

injected current MI  that does not alter the normalization of the superradiant states. 

 

 

 

 

Fig. 10. The dependence of the threshold currents on the width of  the i-zone for two values of the 

transmission coefficient of the output mirror: (a) 1.0T ; (b) 5.0T . 

Fig. 9. The dependence of the coupling coefficients  

on the width of the i-zone. 
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In Fig. 11 we represent the dependence on the width 02 xx   of the quantum dot 

density eN , obtained from the condition that the the entire internal field between 

the two regions n and p be contained between the two na and pa arrays of the 

quantum dot system.  

 

 

Fig. 11. The dependence of the quantum dot density on the width of the i-zone. 

Fig. 12. (a) The radiation powers 
L  and 

T  and the electric power 
EP  as functions of the 

injection current I , for nmxx 5.602  , 1.0T , and 
710F  s−1;  

(b) The temperature variations 
LT , 

TT  as functions of the injection current I . 
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If this density is lower, spatial charge zones arise at the boundaries of the two 

conduction regions to complete the deficit of charge in the quantum dot region.  

If this density is higher, a mobile charge is attracted at the boundaries of the 

conduction region to cancel the excess of charge in the quantum dot region. We 

notice that this dependence is rather weak.  

 

 

In Fig. 12a we represent the radiation powers and the electric power for the 

longitudinal and transversal configurations, as functions of the current injected in 

the device. A radiation power arises only when the injection current exceeds a 

threshold value.  

We notice that, due to the factor 2/1/ DD AL in the radiation term of the population 

inversion, the threshold current (48b) of a transversal device is lower than the 

threshold current (48a) of a longitudinal device.  

However, due the same factor at the denominator of the radiation power (47b) of a 

transversal device, the increase with the injection current of this power is lower 

than that of the radiation power (47a) of a longitudinal one.  

In Fig. 12b the total temperature variation in the semiconductor structure is 

represented.  

We notice that a rather high power of 200  W , that means 0.5 MW  from an active 

area of 21 m , can be obtained at a rather low temperature difference of about 7 C .  

Fig. 13. The radiation powers 
L  and 

T , the electric power 
EP , and temperature variations 

LT , 

TT , as functions of the injection current I , for nmxx 0.602  , 5.0T , and 710F  s
−1

. 
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The radiation power of a transversal device becomes much higher increasing the 

transmission coefficient from 1.0T  to 5.0T  and also the transition dipole 

moment by diminishing the width of the i-zone from nmxx 5.602   to 

nmxx 0.602   as is represented in Fig. 13. In this case, the threshold current of 

the transversal device becomes significantly lower than that of the longitudinal 

Fig. 15. The radiation powers 
L  and 

T , the electric power 
EP , and temperature variations 

LT , 

TT , as functions of the injection current, I  for nmxx 5.502  , 5.0T , and 810F  s
−1

. 

Fig. 14. The radiation powers 
L  and 

T , the electric power 
EP , and temperature variations 

LT , 

TT , as functions of the injection current I , for nmxx 0.602  , 2.0T , and 710F  s
−1

. 
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one. The threshold current of the longitudinal device can be lowered by 

decreasing the transmission coefficient as is represented in Fig. 14. It is 

remarkable that in the three cases represented in Figs. 12-14 the electric power 

dissipated by injecting a current in the device is much lower than the superradiant 

power. This is because, as one can notice also from (47), the superradiant power 

produced by the injected current corresponds to the high transition energy 

between the two zones n and p, while the power electrically dissipated by this 

current corresponds to a very low potential difference necessary for carrying this 

current through the two rather thin, highly conducting zones n and p. The 

difference between these two powers is obtained by heat absorption, when the 

electrons are excited from the potential of the p-zone to the higher potential of the 

n-zone of the next junction.  

In Figs. 12-14, we considered a decay rate of the electromagnetic field 
1710  sF . The threshold currents (48a) and (48b) remain lower than the 

maximum current also for a larger decay rate of the electromagnetic field as 
1810  sF  (Fig. 15).  

6. Non-Markovian fluctuations 

Non-Markovian fluctuations are time-evolutions of polarization, population and 

field due to the self-consistent field of the environment particles that, in our case, 

are the quasifree electrons and holes in the conduction regions of the device. In 

Fig. 16, we represent the dynamics of a longitudinal device with a width of the i-

zone nmxx 5.502   and a transmission coefficient of the output mirror 1.0T , 

while the threshold current is AI L 1149.240   and the maximum current is 

A .099564MI . We consider a step current of amplitude  A I 45  injected at 

time 0 t  . In the Markovian approximation, a superradiant power  tL  is 

generated as in Fig. 16a, while the population  tw  and polarization variables 

 tu ,  tv  have the time-evolutions represented in Fig. 16b. At 0t , the 

population increases from the equilibrium value Tw  for the temperature T , to 

   ||/20 DeT AeNIww   and, after that, while the radiation field increases, the 

population decreases tending to an asymptotic value. With an appropriate choice 

of the phase of the initial polarization,   00 v , while  0u  takes a value 

corresponding to the maximum value Tw  of the Bloch vector, which is 

      T 2/00 22 wwu T . In the Markovian approximation, the 

electromagnetic power is growing to a certain value, and after a short oscillation 

tends to the asymptotic value that according to (47a) is WPL

3102843.1  . 
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However, in the non-Markovian approximation, random fluctuations of the 

polarization, population, and field arise.  

In Fig. 16, we consider such a fluctuation arising at a certain moment of time. In 

equations (21a) and 21b), we take a positive fluctuation with a duration 

snn

12106305.2/1   , followed by a negative one with the same duration. 

From Fig. 16b, we notice that the polarization variables  tu ,  tv  undergo very 

rapid variations, which start a much longer evolution of these variables and of the 

radiation field (Fig. 16a). In Fig. 16c, these rapid variations are represented in a 

short timescale. 

 

 

 

Fig. 16. Dynamics of a longitudinal superradiant device with nmxx 5.502   and 1.0T  

when a step current of I = 45 A is injected in the device: a) superradiant power; b) polarization 

and population; c) polarization fluctuation in a short timescale. 
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In Fig. 17, we represent the dynamics of the transversal device with the same 

semiconductor structure and injected current, while the threshold current takes a 

lower value A.I T 4528230  . We notice that, while the radiation power is lower, 

this device is much less sensitive to the thermal fluctuations described by the non-

Markovian term. In Figs. 16 and 17, we considered a positive fluctuation followed 

by a negative one, which means an integration over a first interval of time 

nn  /1  with a phase 0n  followed by an integration over a second interval of 

time n  with a phase  n . Changing the phases of the fluctuations, i.e. a 

negative fluctuation followed by a positive one (Figs. 18 and 19), we get similar 

evolutions but with opposite signs. 

 

 
Fig. 18. Dynamics of a longitudinal superradiant device with a negative fluctuation   n , 

followed by a positive one  0n . 

Fig. 17. Dynamics of a transversal superradiant device with nmxx 5.502   and 1.0T  when 

a step current of  A I 45  is injected. 
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Conclusions 

On the basis of a non-Markovian master equation for a system of Fermions 

interacting with a mode of the electromagnetic field, we derived polarization 

equations with additional terms for the thermal fluctuations of the environment 

particles, a population equation with an additional term for a current injected in 

the system, and field equations with additional terms for the radiation of the field. 

We performed numerical calculations for a realistic semiconductor device 

including a number of n-i-p superradiant junctions connected in series. A 

superradiant power that is significant for applications is obtained for quite feasible 

values of the physical parameters.  

While a current is injected in the semiconductor structure, the most part of the 

transition energy is converted into coherent electromagnetic energy, a smaller part 

is transfered to the crystal vibrations, a still smaller part is dissipated in the 

conduction regions, and a quite negligible part is emitted as thermal radiation. The 

electron transfer through the quasi-ohmic contacts between the superradiant 

junctions is provided with energy by heat absorption from the environment.  

The coupling of the superradiant electron system to the crystal vibrations mainly 

determines the threshold current of the device. This coupling is very sensitive to 

the transition energy, the corresponding decay rate being proportional to this 

energy with power 5, while the decay rate for the coupling to the conduction 

electrons gets smaller with the transition energy. These dependences can be 

understood in physical terms.  

Fig. 19. Dynamics of a transversal superradiant device with a negative fluctuation   n , 

followed by a positive one  0n . 
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Thus, the decrease of the electric decay rate with the transition energy is an effect 

of the decrease of the dipole moment of the conduction electrons that, at higher 

energies in the conduction band, have states with more rapidly oscillating in space 

wave functions. This decrease of the dipole moment dominates the increase with 

the transition energy of the density of states in the decay rate. The increase of the 

phonon decay rate with the transition energy can be understood by the increase of 

the density of states and of the interaction potential with this energy. However, the 

density of these phonon states increases with the transition energy as long as their 

wavelength is much longer than the distance between atoms. When the phonon 

wavelength approaches the distance between atoms, the density of phonon states 

can no more be considered as quasi-continuous and, for energies that are not in 

resonance with the vibrational modes, the coupling begins to decrease, finally 

vanishing as in the Mösbauer effect. In our case of rather low transition energies, 

when the phonon states can be considered quasi-continuous, an optimum value of 

the transition energy exists, when the decay rate and, consequently, the threshold 

injection current take the minimum value. However, this minimum value of the 

the threshold current could not be very advantageous for a high superradiant 

power. A decrease of the threshold current means a decrease of the current 

injected in the device that cannot be much larger than the threshold value, 

otherwise altering the normalization of the active electron distribution in the two 

quantum states and, by this, dramatically altering the difference between the 

corresponding energy levels. A larger decay rate enables a larger injected current 

and, consequently, a larger superradiant power as long as the threshold current 

I0L (I0T ) remains significantly lower than the maximum current IM. 

We studied two versions of this superradiant device: (1) a longitudinal one, with the 

the superradiant field propagating in the same direction as the injected current, and 

(2) a transversal one, with the superradiant field propagating perpendicularly to the 

direction of the injected current, i.e. in the plane of the semiconductor structure. We 

derived analytical expressions of the superradiant power for the two devices in a 

stationary regime, and numerically solved the time-dependent equations of 

population, polarization, and field in the Markovian approximation. In these 

equations, the non-Markovian dynamics is described by a time-integral of the 

polarization variables multiplied with harmonic functions with a frequency equal to 

the fluctuation rate n, and a random phase with the fluctuation time nn  /1 .  

For the physical system considered here, the fluctuation time is much shorter than 

the decay time: ||/1  n . When such a fluctuation of the non-Markovian term 

arises at a certain moment of time, a long-standing evolution of the radiation 

power, population, and polarization is started. The amplitude of such a fluctuation 

of the superradiant power is far from being negligible, but consists only in an 

oscillation round the Markovian value. 
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