REVIEW REGARDING THE IDENTIFICATION OF VEGETABLES WITH HIGH QUANTITIES NITRATES IN ROMANIA

Gabriela NEAȚĂ¹, Dan ŞCHIOPU²

Abstract: By eating plants or drinking water containing high contents of nitrates or nitrites, the nitrogen enters in the body, it combines with hemoglobin, resulting in a stable compound methemoglobin, so that the bodies present specific phenomenon anemia. Nitrates and nitrites are used as preservatives in the food industry; in such corned nitrosamines were identified health risk to consumers. To reduce the concentration of residual nitrites in meat products it was questioned the use of vegetables as natural sources of nitrite and bring added value to the food. The paper presents the research of our country on nitrate and nitrite content, nutritional value, agro cultivars used and methods used in the culture of vegetables in our country. Since the nitrates and nitrites are found mostly in vegetables that consume leaves and plant parts it finds more raw sap (root, leaf petiole, language) shows a group of vegetables valued as containing average content or high nitrates and nitrites.

Keywords: Methemoglobin, natural preservatives,, nitrates, nitrites.

1. Introduction

One of the plant nutrients is nitrogen. It is found in soil organic matter (humus or organic waste) or mineral compounds (nitrates, nitrites, ammonia etc.)

Administered in the form of chemical or organic fertilizers contribute to increased production, but can be leached, reaching groundwater or driven by water currents above the ground, can be reached water in lakes and rivers, polluting them. When it is accumulated in large quantities it is accumulated in plants. By eating plants or water consume which containing high quantities of nitrates and nitrites, enters on the human body, it combines with hemoglobin results methemoglobin. In contrast to hemoglobin, which is combined with oxygen in the lung, which then gives it tissues, methemoglobin is a stable compound; as a result, part of the hemoglobin is converted to methemoglobin and bodies presented specific phenomena anemia - sometimes very serious - that may increase mortality of young bodies - children and animals. [20].

Nitrates toxic action on man shows when consuming more than 200-300 mg. N as NO_3 on 100 g dry for 24 ore. Fertilization with nitrates - decrease Mo in plant content. (Fritz et al, cited by Lixandru Gh., [11]. Literature cites the case of people

¹ Prof. Ph. D., University of Agricultiral Sciences and Veterinary Medicine of Bucharest,

² Prof. Ph. D., Academy of Romanian Scientists

living on a lake in North America, lake polluted by nitrogen from agricultural land nearby. Fertilizers where nitrogen is applied once the crop over the required dose. Residents drank water from the lake and as a result, infant death increased from 2 ‰ to 5 ‰. When fertilizers were applied fractionated, then infant mortality fell within the area. [7].

As noted previously, nitrate and nitrite content of plants depends on the amount of nitrogen in the soil. Research conducted by Alexandrina Vasu [21] found 20-30 % of hemoglobin of lactating dairy cows blocked as methemoglobin when on fertile soils were applied high nitrogen fertilizer doses. Thus, although there were obtained high yields of forage, they nitrate content and livestock production was affected.

Under the *law tolerance*, any vegetation factor in terms of quantity / intensity shows a minimum (an area where there is deficiency), then an optimum and, when the amount / intensity continues to increase, it becomes toxic and then became lethal. In what concerns nitrogen, optimum plant does not correspond to the optimum for the consumer, because the content of nitrates and nitrites in plant can be toxic to the consumer. It must therefore know at what level (at which point) of the curve tolerance is achieved acceptable concentration for the consumer. So it must know the content of nitrogen in the soil.

Total nitrogen content in the soil concerned agronomy specialists since the nineteenth century. This content is the content of humus and mineralization conditions. humus content and total nitrogen in the main soil types in our country are shown in Table 1.

Soil Type	Humus content in soil (%)	Total nitrogen content from soil (%)
Sol-brown steppe	2-4	0,190
Brown Chernozem	3-5	0,210
Chernozem chocolate	5-7	0,230
Chernozem	6-8	0,278
Chernozem degraded (leachate)	5-7	0,290
Reddish-brown soil Forest	2-4	0,162
Podsol from Gaesti	2-3	0,118

Table 1. Humus content and total nitrogen of the main soil typesin our country after Ionescu-Şişeşti Gh., Staicu Ir., [10]

Plants accumulate different nitrate (NO₃), plant tissue accumulation is dependent on genetic factors, environment (humidity, temperature, radiation, light exposure period) and agricultural (dose and chemical form of nitrogen compounds using, summer use of herbicides). [12]

By appropriate agro-technical measures can increase soil nitrogen content, can raise all kinds of soil fertility. This is the case in vegetable growing, where large amounts of fertilizer are used, both organic and mineral, so the probability that plants have a high content of nitrate is increased.

Growing conditions also intervene in this sense in greenhouses and solariums amount of manure administered reach 80-100 t / ha, while in field is 40-45 t / ha. Following lettuce grown in greenhouses has a higher content of nitrates compared to the cultivated field. [6, 13]

Nitrates and nitrites are used as preservatives in the food industry because: 1) release nitric oxide (NO) with myoglobin forms nitrozmioglobina, offering meat and meat products pink color, very appreciated by consumers; 2) controls the oxidation of lipids; 3) antimicrobial effect; 4) enhance the flavor of meat and meat products.

The use of nitrates for preserving meat is more limited because they are stable and the release of NO is produced by fermentation processes. Reduction of nitrate to nitrite under the action of the natural enzymes present in meat or under the action of the bacteria that possess nitrate reductase, added later in the flesh [9, 16]. Currently, the use of starter cultures possess nitrate reductase is the most common method of preserving meat products, nitrite, nitrate and not being true conservation ingredient.

Since 1971 nitrites in cured meat nitrosamines were identified health risk to consumers. Nitrosamines compounds, potentially carcinogenic, are formed under specific conditions of pH and temperature, from the reaction of secondary amines with nitrite ion. If there corned sufficiently high concentrations of residual nitrite cooked at t> 130°C, the probability that there are nitrosamines is higher. [19]. For this reason, researchers have put the issue of reducing the concentration of residual nitrites in meat products by using natural sources of nitrite provide, by their composition a higher value to food.

Thus, to avoid the consumption of nitrate and nitrite in dangerous quantities for human health by Order No.1 / 2002 of the Ministry of Health regarding food safety [23], were established maximum limits for nitrates allowed in some fresh fruit and vegetables for marketing and human consumption. (Table 2).

Duaduat	Cultivated in			
Product	Field	Greenhouse		
Peppers (bell peppers,	150	400		
green peppers, kapia, hot)				
Potatoes	300	-		
Cucumbers	200	400		
Dehydrated onion	80	-		
Cauliflower	400	400		
Courgettes	500	-		
Carrots	400	-		

Table 2. Maximum levels of nitrates allowed in some fresh fruit and vegetables for marketing and human consumption. (mg NO₃ / kg fresh product). [23].

Lettuce	2.000	3.000
Red beets	2.000	-
Spinach	2.000	3.000
Tomatoes	150	300
Cabbage	900	-
Eggplant	300	400
Apples	60	-
Pears	60	-
Watermelon red	100	-
Grapes	60	-

Table 3 shows the nitrate content of several basic production vegetable plants.

High (up to 5000)	Medium (300-600)	Low (80-100)
Lovage (<i>Levisticum</i>)	Cauliflower	Brussels sprouts
Cress (Lepidium sativum)	Courgettes	Garden peas
Lettuce (<i>Lactuca sativa ssp. capitata</i>)	Pumpkin	Beans
Spinach	Japanese radish	Potato
Beet	Brassica napus var. Napobrassica	Tomato
Peas	Parsnip	Onion bulbs (<i>Allium cepa L.</i>)
Cabbage (Brassica oleracea var. Acephala)	Horseradish	Melon (Cucumis melo)
Green onion	Head cabbage	Watermelons (<i>Citrulus sp.</i>)
Radishes	Carrot (Daucus carota ssp. sativus)	Berry fruits (boabe)
	Cucumbers	

Fable 3. The content of nitrates in the basi	c production (m	ng / kg crude – grass proc	luct, unprocessed) [22]
---	-----------------	----------------------------	-------------------------

Generally, the vegetables accumulated large amounts of NO₃. In Romania, the highest NO₃ concentrations were observed in lettuce, spinach, root [12] and tomatoes [17].

The fruits young, very young cucumbers, harvested once formed, green tomatoes and young tissues generally have higher nitrate concentrations [14].

Large quantities of nitrates are found mostly in vegetables that consume leaves (Table 3) and in parts of the plant where the raw sap finds much (root, leaf, petiole and limb). [22].

2. Material and method

To identify the potential of nitrate and nitrite accumulation in vegetables grown in greenhouse, solarium or field in Romania, there were used dates from the literature of our country during about ten years. [1, 2, 3, 4, 8, 14]

3. Results and Discussion

Chirică Barbu Mileva et al. [4] monitored the quality characteristics of some cultivars of tomato products in solarium and greenhouses supplying markets in Bucharest. Table 4 presents some results of analyzes performed.

	Culture	Cultivar	N-NO ₃ ppm	P-PO ₄ ppm	K, ppm
	The first	measurement - T	The beginning of	harvest (20 May	v 2012)
1	Solarium	Siriana F1	146.7	156.3	973
2	Solarium	Arletta F1	138.3	175.8	086
3	Greenhouse	Siriana F1	144.3	170.2	1008
4	Greenhouse	Katerina F1	145.2	165.3	1102
	A second	nd determination	n - Maximum ha	rvest (05.June.20	012)
1	Solarium	Siriana F1	128.2	196.5	1950
2	Solarium	Arletta F1	104.0	198.7	1870
3	Greenhouse	Siriana F1	109.3	200.1	1960
4	Greenhouse	Katerina F1	119.3	189.3	1890
	A th	ird determinatio	on - End of harve	est (15.June.2012	2)
1	Solarium	Siriana F1	98.3	220.4	1489
2	Solarium	Arletta F1	100.7	210.5	1503
3	Greenhouse	Siriana F1	87.6	219.3	1574
4	Greenhouse	Katerina F1	101.3	215.3	1687
Maximum permissible limits according to the literature			C.M.A. – 300 ppm	200-400 ppm	1000-2000 ppm

Table 4. Analysis of nitrates, phosphorus and potassium in tomato fruits harvested at three periods.

 Averages on the cultivar [4].

It is noted that the nitrates decreased quantify which is attributed to the appropriate fertilization and metabolism of this compound during the ripping.

Phosphates increase during the process, and potassium content increased to the second measurement, and then lowers, while remaining at values higher than initial period.

Soluble carbohydrate content (%), vitamin C (fresh produce), lycopene (ppm) and carotene (fresh produce) is presented in Table 5.

Culture	Cultivar	Soluble carbohydrates %	Vitamin C mg/100 g f.p.	Carotene f.p.	Licopene (ppm)
Greenhouse	Katerina F1	4.79	15.2	8.24	24.98
Greenhouse	Siriana F1	4.78	12.8	7.95	22.37
Solarium	Arletta F1	4.81	12.4	7.52	13.00
Solarium	Siriana F1	4.58	14.2	8.12	10.92

Table 5. The content of soluble carbohydrates, vitamin C, lycopene and carotene in tomato fruits grown in greenhouses and solariums. [4]

These data indicate the nutritional value of tomatoes, showing that these vegetables as sources of nitrate are also a source of nutrients and vitamins.

Tables 4 and 5 shows the variability of the content of mineral elements, carbohydrates, vitamins and provitamins, depending on the cultivar.

Neață Gabriela et al., [14] analyzing some vegetables from the markets of Romania, found quantities of nitrates and nitrites which are shown in Table 6.

No.	Product	ppm NO ₃ ⁻	M.A.L. NO ₃ ⁻	ppm NO2 ⁻	M.A.L. NO2 ⁻
1.	Lettuce cultivar iceberg *	1878+/-79	3000	0.12+/-0.02	0.5
2	Lettuce cultivar Mona *	1567+/-56	3.000	0.18 +/-0.08	0.5
3	Lettuce cultivar Marula **	789+/-92	2.000	0.23 +/-0.07	0.5
4	Tomatoes Amanda*	267+/-13	300	0.12 +/-0.05	0.5
5	Tomatoes Tovi Roca*	195+/-14	300	0.21 +/-0.06	0.5
6	Tomatoes Lady Rosa*	258+/-15	300	0.18+/-0.06	0.5
7	Tomatoes Menhir*	289+/-15	300	0.23 +/-0.04	0.5
8	Tomatoes Siriana F1 **	98+/-17	150	0.19 +/-0.06	0.5
9	Tomatoes Arletta F1**	112+/-19	150	0.22 0.08	0.5
10	Carrots De Nantes	323 +/- 7	400	0.25+/- 0.10	0.5
11	Carrots Narbonne	253+/-12	400	0.26+/-0.08	0.5

Table 6. Contents of nitrate and nitrite in some vegetables from the markets of Romania [14]

* Culture in the solarium or in green house ** Culture in field

It is noted that all species that have been made analysis containing both nitrates and nitrites. In field crops, nitrate and nitrite content is generally low.

Biochemical characteristics of tomato paste, juice and other products marketed in some European countries are shown in Table 7.

Variant	Carbohy- drates %	% Acidity	% Vitamin C, mg / 100 g fresh weight	Lycopene mg / 100 g fresh weight
Ketchup, Bulgaria	4.2	0.6	37.25	166.4
Pizza juice, Italy	4.8	0.5	43.25	328.7
Spaghetti juice, Romania	3.9	0.7	45.13	175.4
Tomato pasta (Olimpia), 3 %	4.5	0.5	36.89	345.2
Tomato pasta (Sultan), 24 %	4.3	0.6	32.45	287.3
Pomodore for pizza	4.3	0.6	44.56	214.5
Pasta Maxim 22-24 %	4.7	0.7	50.25	214.7
Tomato juice, Romania	4.2	0.5	43.12	78.3
Peeled tomato	4.2	0.8	52.14	89.3

Table 7. Biochemical characteristics of tomato paste, juice and other products sold in our country [8]

Table 8. Chemical characteristics of tomato paste, juice and other products sold in our country [7]

Variant	pН	N-NO3 ⁻ ppm	P ppm	K ppm	Ca ppm	Mg ppm	Na ppm
Ketchup, Bulgaria	4.2	60.7	86.5	1970	168.4	213.7	70.2
Pizza juice Italy	4.2	58.9	80.7	2110	176.5	243.5	67.5
Spaghetti juice Romania	4.0	60.2	98.7	2450	210.2	324.5	68.2
Tomato pasta (Olimpia), 33%	3.9	142.0	1631.0	10400	1234.5	634.2	124.7
Tomato pasta (Sultan), 24 %	3.7	115.9	1767.0	22400	1154.8	598.3	146.7
Pomodore for pizza	4.0	102.6	95.7	4200	978.4	367.2	79.2
Pasta Maxim 22-24 %	3.9	95.0	1942	9000	1067.8	432.6	116.8
Tomato juice, Romania	4.2	56.9	98.7	2740	123.7	256.9	65.3
Peeled tomato	4.1	95.6	115.34	134.5	134.5	267.5	70.4

From the tables 7 and 8 apparent high nutritional value of tomato products from industrialization of tomatoes and also presents nitrates N-NO₃ contents.

Research conducted on the quality of carrot cultivars used in Dobrogea, [1] refers to the agrochemical characteristics as well as biochemical and yields obtained. Table 9 presents agrochemical characteristics and Table 10 - biochemical characteristics.

Variant	Cultivor		Content ppm	
varialit	Cultivar	N-NO ₃ ⁻	P-PO ₄	K
Ct	De Nantes	78	268.31	2450
V1	Belgrad F1	76	318.32	2980
V2	Marion F1	101	298.50	2540
V3	Canada F1	95	246.21	2380
V4	Florida F1	98	265.10	235

Table 9. Agrochemical Characteristics of some cultivars of carrot used in Dobrogea [1]

Table 10. Biochemical Characteristics of carrot cultivars used in Dobrogea [1]

Variant	Cultivar	Carbo- hydrates %	% Acidity	% Vitamin C, mg / 100 g fresh weight (malic acide)	Carotene mg / 100 g fresh weight
Ct	De Nantes	5.8	0.46	185	8.50
V1	Belgrad F1	5.9	0.52	293	7.20
V2	Marion F1	6.2	0.65	250	9.12
V3	Canada F 1	8.2	0.57	199	10.60
V4	Florida F1	7.1	0.61	260	9.80

Variant	Cultivar	Yield t/ha	Procent	Dif. +/-	Signification
Ct	De Nantes	17.6184	100.00	-	-
V1	Belgrad F1	17.7704	100.86	+0.152	ns
V2	Marion F1	16.2592	92.28	- 0.0892	0
V3	Canada F1	18.1888	103.34	+0.5704	ns
V4	Florida F1	17.9824	102.06	+0.364	ns

Table 11. The yields of carrot cultivars used in Dobrogea [1].

From Tables 9, 10 and 11 there is a nitrate content below the limits set out in Ord. No. 1 of 3 January 2002.

Research on biological culture of carrots was the subject of Câmpeanu Gh. et al. [3]. The result carrots quality analyzes presented in Tables 12 and 13.

Variant	N-NO3 ⁻ Pnm	P-PO ₄	K ppm				
Crop growing stage intermediate (carrots	ne size of a pencil)– 08.June.2012-						
Ct 1. 4 kg. cattle manure / m ² 2. 6 cattle manure / m ² 3. 8 cattle manure / m ² 4. 2 kg. chicken manure / m ² 5. 3 kg. chicken manure / m ² 6. 4 kg, chicken manure / m ²	115 117 151 126 154 158	64.4 108.0 110.0 92.8 96.8 71.2	2020 2300 2220 2140 1860 2060				
Final harvest – 13.97.3012	1/4	04.0	2100				
Ct	141	313.6	2340				
1. 4 kg. cattle manure / m^2	107	385.2	2980				
2. 6 cattle manure / m^2	167	387.6	3440				
3. 8 cattle manure / m^2	187	312.8	2220				
4. 2 kg. chicken manure / m^2	183	292.4	2660				
5. 3 kg. chicken manure / m^2	166	298.8	1880				
6. 4 kg, chicken manure / m^2	308	176.8	1600				

Table 12. Nutrient content of carrots in unchanged form. [3]

From Table 12 shows that the largest amounts of N-NO₃ variants are fattened with manure from chickens and P-PO₄ and K variants fertilized with cattle manure. These elements are in greater quantities in the final harvest.

Variant	Sugar %	Vitamin C mg/100 g fresh product	Acidity %		
Ct	5,468	0,015	0,1157		
1. 4 kg. cattle manure $/m^2$	5,531	0,0225	0,1447		
2. 6 cattle manure / m^2	5,843	0,015	01519		
3. 8 cattle manure / m^2	5,593	0,025	0,1302		
4. 2 kg. chicken manure / m^2	5,718	0,015	0,1447		
5. 3 kg. chicken manure / m^2	5,781	0,0225	0,1302		
6. 4 kg, chicken manure / m^2	5,593	0,0225	0,1013		

Table 13. Biochemical characteristics of final harvesting carrots. [3]

The data in Table 13 indicates a high nutritional value in all variants fattened.

Influence of fertilization system on the quality of cucumbers grown in southern Romania was studied by Gh. Câmpeanu et al. [2]. Variants of the experience are shown in Table 14.

From Table 15, it follows that at cucumbers, the highest content of N-NO₃, P- PO_4 and K variants found in classic variants, especially the cultivar Mirabelle F1. Triumph cultivar F1 evidenced by the high content of K in under the influence of fertigation.

Table 16 highlights the most high carbohydrate and soluble solids in organic fertilization variants, the higher acidity under the influence of classical fertilization and the highest content of vitamin C in fertigation variants.

The conclusions drawn from Table 3 are that nitrates are found in greater quantities in plants that consume the leaves, and plant parts where there is plenty of raw sap (root, leaf petiole and limb), consider we can appreciate vegetables that are medium or high content of nitrates and nitrites.

Variant	Fertilization	Cultivar	Fertilization scheme					
11	Organia	Triumf F1	20 t/ha manure					
12	Organic	Mirabelle F1						
21		Triumf F1	- Fertilizer Complex: 15-15-15, 250 kg / ha applied					
22	Classic	Mirabelle F1	to crop establishment. - Two fertilization, 100 kg / ha with the same fertilizer, wide three six weeks after transplanting.					
31			- Fertigare S (Starter) - 15 N; 30 P ₂ O ₅ ; 15 K ₂ O -					
32	Fertigation	Triumf F1 Mirabelle F1	 with after transplanting to encourage root formation area. Fertigare I – 14 N; 11 P₂O₅; 25 K₂O – to promote vegetative growth after transplanting on; Fertigare II – 24 N; 8 P₂O₅; 16 K₂O – to foste enjoyment. 					

Table 14: Experimental variants [2].

I used vegetable group in [5].

Vegetables from cabbage group:

They have, in general, an average content of nitrates.

-White cabbage, head cabbage *Brassica oleracea L. White*, var.*capitata* L. f. *alba* DC

- Red cabbage Brassica oleracea var. capitata L.-f. rubra L

- Savoy cabbage, <u>kale</u>, *Br. oleracea* L.,. convar.*capitata* (L.) Alef. var. *sabauda* L.

- Brussels spyouts, Brussels cabbage Brassica oleracea L. var gemmifera DC

- Kale, scoth kale, curlies, <u>cabbage for leaves</u> *Brassica oleracea* L., convar *acephala* (D.C.) Alef. var. *sabellica* L

- Chinese cabbage *Brassica rapa* l., ssp. *pekinensis* (lour) Hanelt; ssp. *chinensis* (L) Hanelt.

- Cauliflower Brassica oleracea L., var. botrytis (L.) Miller, subvar. cauliflora Alef.

- Broccoli Brassica oleracea L., convar. botrytis L. var. cymosa, Duchesne (1875); sin. var. italica Plench (1808)

- Kohlrabi, turnip rooted cabbage, kale *Brassica oleracea* L., convar. *caulorapa* (D.C.) Alef., var. *gongylodes* L.

Var.	Fertilization	Cultivar	Content. ppm										
			N-N03			P	PO4	K					
	340000905400V6	0.1242.000110.02	MinMax	Medium	- %	MinMax	Medium	.%	MinMax	Medium	. 96		
VII		Triumf F1	75102	87	100.00	146.23168.12	154.53	100.00	888932	920	100.00		
VII	Organic	Mirsbelle F1	88110	95	100.00	114.56136.15	124.56	100.00	9951120	1060	100.00		
V21	<i></i>	Triumf F1	198265	252	289.65	162.12185.54	173.62	112.53	22452580	2400	260.86		
V22	Classic	Mirabelle F1	185245	233	245.26	198.23224.20	214.52	172.22	19962170	2060	194.33		
Va	Fertirigation	Triumf F1	140168	153	175.86	165.12189.23	173.00	112.17	20102156	2100	228.26		
Vn		Mirabelle F1	101119	114	120.00	159.56225.86	200.13	160.67	18502010	1850	174.52		

Table 15. Agrochemical characteristics of harvesting cucumbers [2].

 Table 16. Biochemical characteristics of cucumber harvest [2]

Var	Fertilization	Cultivar	Soluble carbohydrates %		Acidity %			Vitamin C, mg ascorbic acid /100g f.p.			Dry matter %			
			Min.Max	Media	%	Min_Max	Media	%	Min_Max	Media	56	Min.Max		- %
Vn	0	Triumf F1	2.9.3.06	3.05	100.00	0.270.32	0.30	100.00	18.5518.85	18.65	100.00	3.08.3.14	3.12	100.00
Vız	Organic	Mirabelle F1	2.89.3.1	3.02	100.00	0.250.29	0.28	100.00	18.70.19.15	18.95	100.00	3.163.28	3.25	100.00
V21	~	Triumf F1	2.68.2.86	2.78	91.14	0.350.42	0.39	130.00	18.07_18.20	18.15	97.32	2.983.04	3.01	96.47
V22	Classic	Mirabelle F1	2.75.2.88	2.85	94.37	0.380.41	0.40	142.85	18.1218.45	18.35	184.69	2.92.3.02	2.98	91.69
$V_{\rm H}$	- Fertirigation	Triumf F1	236.252	2.48	81.31	0.330.37	0.35	116.66	19.5519.86	19.70	105.63	2.85.2.92	2.85	91.34
Vu		Mirabelle F1	2 26 .2 32	2.29	75.82	0.290.32	0.31	110.71	19.12_19.35	19.26	101.63	2.702.80	2.74	84.30

Varieties underlined that consume leaves, we believe - based on Table 3 - that have a higher content of nitrates;

Root vegetables:

It believes that they have an average content of nitrates.

- Yellow parsnip, carrot Daucus carota L. conv. sativus (Hoffm.) Hajek

- Parsley, parsley root Petroselinum crispum Mill conv. radicosum Mill.

- Parsnip Pastinaca sativa L. convar. hortensis Ehrh.

- Celery, celeriac root - Apium graveolens L., convar. rapaceum Mill.

- Gardenbeet, beetroot *Beta vulgaris* var. *canditiva* Alef. <u>In Table 3, without</u> specifying variety, beets vegetables are included in the group with high content of nitrates.

- Radish *Raphanus sativus* L. convar. *sativus* radish month. <u>In Table 3,</u> radishes month in group vegetables are high in nitrates content.

- Körner Raphanus sativus L. convar. Niger (Mill) - summer and winter radish

- Swede, rutabaga Brassica napus var. napobrassica L.

- Turnip, edible turnip (syn. Chinese turnips, pears land, stubble turnips, turnip) *Brassica napus*, conv<u>ar.</u> *rapifera* L. (sin. *B. campestris* L. subsp. *rapifera* Metz. sin. *Brassica rapa* L- *esculenta* Coss și Gam.)

- Sweet patato Ipomea batatas Poir.

Bulbous vegetable plants:

- Onion *Allium cepa* L. In Table 3, onion bulbs are included in the group contained with low nitrate and green onions vegetables are included in the group with high content of nitrates.

- Garlic common garlic Allium sativum ssp. vulgare L.

- Common leek, leeks Allium Porum L.

Cucurbit vegetable plants

- Slicing, cucumber pikling, cucumber *Cucumis sativus* L. In Tab.3. – Medium contents of nitrites

- Watermelon *Citrullus vulgaris* L. sin. *C. lanatus* (Thlumb) Mansf. In Table 3 - low content of nitrates

- Gourd, zucchini *Cucurbita pepo* L. convar. *giromoontiina* Greb, sin. var. *Oblonga* Sér.În Table 3 - average content of nitrates.

- Crown gourd, zucchini patison (syn. Bonnet king) Cucurbita pepo var.. patissoniana GREB sin. radiata NOIS.

- Pumpkin, edible pumpkin (syn. Common pumpkin) *Cucurbita maxima* Duch. In Table 3 - Average nitrates content.

- Winter squasb, muscat pumpkin (syn. Pies) Cucurbita moschata Duch.

Vegetable herbs

There are plants with high content of nitrates (v. Tab. 2, 3 and 4)

28

- Cabbge heading lettuce, lettuce Lactuca sativa L.

- Endive, chicory Cichorium endivia L. ssp. Endivia

var. *crispum* - var.

var. latifolium Lam. - scarola or garden leaved chicory

- Spinach Spinacia oleracea L.

- Orache, mountain spinach, pig weeds Atriplex hortense L.

- Ribbed celery *Apium graveolens* L., ssp. *dulce* (Mill.) Lemket Rothm.ribbed celery; convar. *secalinum* Alef. – smallage, celery leaves

- Swisschard spinach beet, ribbed beet Beta vulgaris L., ssp. vulgaris, convar. Vulgaris-

var. Flavescens D.C. var. vulgaris - chard leaf

- Cardon, chard Cynara cardunculus L.

- Sweet fennel, florence fennel *Foeniculum vulgare* Mill., ssp. *dulce* (Pesl.) Janch., convar. *azoricum* (Mill.) Thell.

- New Zealand spinach *Tetragonia tetrgonoides* (Pallas) O. Kuntz. Sin. *Tetragonia expansa* Murr.

- Basella (sin. Malabar spinach) Basella rubra L.

- Cornsalad, hauch, lamb's lettuce (syn. valerianela, field salad, lamb salad) *Valerianella olitoria* Maench., sin. *Vallerianella locusta* L.

- Cooltankard, borage Borrago officinalis.

Aromatic and spicy vegetable plants.

The leaves that are consumed are high in nitrates, but given that use small amounts poses no danger to consumers' health. The species that are consumed seeds were not mentioned in this paper.

- Commondill, dill Anethum graveolens L., ssp. hortorum Alef.

- Leaf parsley *Petroselinum crispus* (Mill.) A.N. Hill., ssp. *crispum* convar. *crispum* leaves persil

- Summer savory, annual savory, savory Satureja hortensis L.

- Chervil Antthriscus cerefolium (L.) Hoffm., ssp. cerefolium

- Basil Ocimum basilicum L.

- Garden cress - Lepidium sativum L.

- Marjoram (syn. Marjoram, maioran) Majorana hortensis Moench.

- Coriander (syn. white pepper) Coriandrum sativum L.

Perennial vegetable plants

Perennials for roots

- Horse-radish Armoracia rusticana Lam., sin. Cochlearia armoracea L., sin. Armoracia lapathifolia Gilb.

- Salsify (syn. cinnamon white) Tragopogon porrifolius L.

- Earthpuff, topinambur, Jerusalem artichokes, artichokes, (syn. turnip earth, earth apple, potato artichoke) *Helianthus tuberosus* L.

Perennial vegetable plants for bulbs, false stems, leaves.

- Egyptien onion, onions of Egypt (sin. rocambole onion, catawissa) Allium cepa L., f. bulbiferum Rgl.; Allium cepa f. proliferum

- Shallots (syn. Vlas, onion shallots Allium ascalonicumL.

- Japanese bunching onion, winter onion Allium fistulosum L.

- Great-header garlic, pearl onions (syn. Rakkyo) *Allium ampeloprasum* L. f. *homolense* A. et G., sin *Allium chinense* L.

- Common chives, lawn onion (syn. Pure) Allium schoenoprasum L. Since the leaves are consumed, we believe it has a high content of nitrates.

- Chinese chives, chinese onion Allium tuberosum L.

- Garlic of Egypt (sin. rocambolle) Allium sativum ssp. Sagitum

- Asparagus Asparagus officinalis L. It believe that is high in nitrates content, like all young tissues.

<u>The following species have a high content of nitrates Since there are consumed the leaves.</u>

- Rhubarb (syn. Rhubarb, rabarber) *Rheum rhabararum* L., (sin. *R. undulatum* L., sin. *R. rhaponticum* L., sin. *R. Sibiricum* Pall.)

- Cynara artichoke Cynara scolimus L.

- patience dock, garden sorrel - (syn. Curly dock) Rumex patientia L.

- saudoch, Sorrel Rumex acetosa L.

- Dandelion Taraxacum officinale Web. (sin. Taraxacum hortanse Hort.)

- Nettle *Urtica dioica* L.

Species that follows, are not used in large quantities and there are no health risk to consumers.

- Lovage Levisticum officinale Koc.

- Tarragon Artemisia dracunculus L.

- Garden sage, sage (syn. Sage) Salvia officinalis L.

- Peppermint (syn. Good mint) Mentha piperita Huds.

- Millisbalm, common balm, melissa (syn. balm, thyme) Melissa officinalis

- Water cress, cress (syn. Cress pond) *Nasturium officinale* (L.) Brown., sin. *Roripa nasturium aquaticum* (L.) Hayek

- Rosemary (syn. Mirtin, dendrites) Rosmarinus officinalis L.

- French thime, thyme Thymus vulgaris L.

L:

4. CONCLUSIONS

Based on results of research carried out in our country show the following important conclusions:

1. Tomato, nitrates fall during the harvest (April 20th-15. June) phosphates grow, potassium has the lowest value at first harvest and the highest level to the second harvest (05.June).

2. The content of nutrients, carbohydrates, vitamins and pro-vitamins will vary depending on the cultivar.

3. Nitrates and nitrites contents are low in field culture compared with culture in greenhouse and solarium.

4. Existing products from the Romanian Market, from processing tomatoes have high nourishing value and contain nitrates.

5. At carrot both biochemical and agrochemical composition vary depending on the cultivar. There was a high nutritional value in all variants fertilized; the nitrate content is below the limits set out in Ord. No. 1 of January 3, 2002 the Ministry of Health. The largest amounts of N-NO₃ variants are fertilized with manure from chickens and P-PO₄ and K in variants fertilized with cattle manure. These elements are in greater quantities in the final harvest.

6. At cucumbers, the highest content of N-NO₃, P-PO₄ and K variants found in classic fertilized, especially the cultivar Mirabelle F1. Triumph cultivar F1 evidenced by the high content of K under the influence of fertigation; the highest content of dry matter and soluble carbohydrates found in organic fertilization, the higher acidity under the influence of classical fertilization and the highest content of vitamin C in variants with fertigation.

Bibliography

1. Anagnoste I., Câmpeanu Gh., Samata P., Neață Gabriela – 2011 – *Research on quality of carrot cultivars grown in Dobrogea*. Lucrări științifice U.Ş.A.M.V., Seria B, Vol. LV, pp.28-32. ISSN 1222-5339.

2. Câmpeanu, Gheorghe, Costache, Manuela-Adriana, Neață, Gabriela – 2012 - *Influence of fertilisation system on quality of cumcumbres grown in southern Romania.* 41st Annual Meeting ESNA, European Society for New Methods in Agricultural Research, Advances in agrobiology research and their benefits to the future, Book of abstracts from International Scientific Conference ESNA, Slovak Republic, 24-28 sept, Stara Lesna, pp. 111. ISBN 978-80-552-0855-8.

3. Câmpeanu Gh., Neață Gabriela, Teodorescu R, Basarabă A. – 2013 – Research about the biological culture of carrot. Universitatea din Craiova –

University of Craiova, seria Biologie, horticultură, Tehnologia prelucrării produselor agricole, Vol.XVIII (LIV). pp .59-64.

4. Chirică Barbu Mileva, Câmpeanu Gheorghe, Neață Gabriela, Costache Manuela, Atanasiu Nicolae, Fiscuci Gheorghița – 2012 - Cercetări privind unele caracteristici de calitate la unele cultivaruri noi de tomate în sere și solarii în zona de sud a țării. Abstract si prezentare poster la Simpozionul Științific cu participare internațională "Dezvoltarea durabilă a agriculturii prin agroturism, protecția consumatorului și a mediului cu respectarea legislației naționale și internaționale", Universitatea Bioterra București, Facultatea de Management Agroturistic, Focșani, 18-20 oct. 2012

5. Ciofu Ruxanda (coordonator), Nistor Stan, Popescu Victor, Chilom Pelaghia, Apahidean Silviu, Horgoş Arsenie, Berar Viorel, Lauer Karl Fritz, Atanasiu Nicolae. - 2003 - *Tratat de legumicultură*. Editura Ceres, București.

6. Ciofu Ruxanda – 2014 - Materiale nepublicate.

7. Commoner B. – 1989 - Cercul care se închide. Editura Politică, București,.

8. Fiscuci Ghiorghița, Neață Gabriela, Câmpeanu Gh., Costache Manuela – 2011- Research regarding the biochemical and chemical contents of industralisation process of tomatoes Lucrări științifice, U.Ş.A.M.V.B.,Seria B, Vol.LV, pg.59-62, ISSN 1222 – 5339

9. Gray J.I., Macdonald B., Pearson A.M., Morton I.D. – 1981 - Role of nitrite in cured meat flavor: A review. J. Food Prot. 44, 302–312

10. Ionescu-Şişeşti Gh., Staicu Ir. – 1958 - Agrotehnica. Editura Agro-Silvică, București,

11. Lixandru Gh., Calancea L., Caramete C., Marin N., Goian M., Hera Cr., Borlan Z., Răuță C. – 1990 – *Agrochime*. Editura Didactică și Pedagocică, București,.

12. Mureşan C., Tofană M., Socaci S., Salantă S. - 2012 - Content Evaluation on Nitrates and Nitrites in Local and Imported Vegetables, Bulletin UASVM Agriculture, 69(2),

13. Neață Gabriela – 2002 - Agrochimie și Bioologia solului Editura Botech, București,

14.Neață Gabriela, Stoian Ellena, Mocuța Dorina, Temocico Georgeta, Fîntîneru Gina, Georgescu Mihaela – 2013 - *Nitrates and nitrites as sources of n-nitroso compound*. Roumanian Biotechnological Letters, Univerity of Bucharest, vol.18, No.5, 8583-8586.

15.Neață Gabriela – 2014 -. Materiale nepublicate.

16. Sebranek J.G. – 1979 - Advances in the technology of nitrite use and consideration of alternatives. Food Technol., 33, 58–62, 93

17. Simion G., Câmpeanu Gh., Vasile G., Artimon M., Catană L., Negoiță M. – 2008 - *Nitrate and nitrite accumulation in tomatoes and derived products*. Roumanian Biotechnological Letters Vol. 13, No. 4, 3785-3790

18.- Sindelar J.J., Cordray J.C., Sebranek J.G., Love J.A., Ahn D.U. - 2007 b - Effects of varying levels of vegetable juice powder and incubation time on color, residual nitrate and nitrite, pigment, pH, and trained sensory attributes of ready-to-eat uncured ham. Journal of Food Science, 72 (6),, S388-S395

19. Sindelar J.J., Milkowski A.L., Sodium - 2011 a, - Nitrite in Processed Meat and Poultry Meats: A Review of Curing and Examining the Risk/Benefit of Its Use, American Meat Science Association, 3, 1-14

20. Șchiopu D. – 1997 - *Ecologie și protecția mediului*. Editura Didactică și Pedagocică, București, ISBN: 973-30-4848-0

21. Vasu Alexandrina – 1989 - Componenții în echilibru în circuitul solplantă –animal. În - "Studii și cercetări de biologie", seria Biologie vegetală, tom. 41, nr.1, Editura Academiei, București.

22*** 1989 - Nitratâ na priusadbenom uciastke. În rev. "Zdarovie", nr. 4, Moskva,.

23*** Ordinul nr.1/2002 al Ministerului Sănătății.